Требования к заземлению электрооборудования. Тема: Монтаж устройств защитного заземления

Требования к заземлению электрооборудования. Тема: Монтаж устройств защитного заземления

Размещено 14.08.2011 (актуально до 22.02.2013)

Какой-либо части электроустановки и другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.


Защитным заземлением называется заземление частей электроустановки с це­лью обеспечения электробезопасности.


Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.


Занулением в электроустановках напряжением до 1 кВ называется преднамерен­ное соединение частей электроустановки, нормально не находящихся под напряже­нием, с глухозаземленной нейтралью генератора или трансформатора в сетях трех­фазного тока, с глухозаземленным выводом источника однофазного тока и с глухо-заземленной средней точкой источника в сетях постоянного тока.


Заземлителем называется проводник (электрод) или совокупность металличе­ски соединенных между собой проводников (электродов), находящихся в соприкос­новении с землей.


Глухозаземленной нейтралью называется нейтраль трансформатора или генера­тора, присоединенная к заземляющему устройству непосредственно или через ма­лое сопротивление (например, через трансформаторы тока).


ГОСТ Р 50571.2-94 предусматривает следующие типы систем заземления элек­трических сетей: TN-S, TN-C, TN-C-S, IT, ТТ. Для зданий можно встретить в основ­ном схемы TN-S, TN-C, TN-C-S. Схемы IT, TT характерны, как правило, для ло­кальных зон внутри здания и обеспечивают телекоммуникационные системы, пи­тающиеся постоянным током. Буквы и графические символы, используемые в при­веденных обозначениях типов систем заземления и на рисунках, расшифрованы в табл. 6.1 и 6.2.


Заземление (зануление) средств вычислительной техники, телекоммуникацион­ных средств и технологического оборудования обеспечивает решение двух основ­ных задач:

Защиту персонала от поражения электрическим током при повреждении изо­ляции и замыкании одного из проводов питающей линии на корпус оборудо­вания или от появления на корпусе оборудования опасного для человека потенциала по каким-либо другим причинам (например, из-за индуктивных или емкостных связей);

Защиту оборудования и линий обмена информацией (в том числе локальных вычислительных сетей) от помех, которые возникают со стороны питающих сетей из-за разности потенциалов между различными точками цепей заземле­ния и блуждающих токов в цепях заземления вследствие воздействия внеш­них электромагнитных полей и других причин.


Таблица 6.1. Буквенные обозначения систем заземления и заземляющих проводников


Таблица 6.2. Условные обозначения проводников




Первая задача решается с помощью защитных заземляющих устройств, выпол­няемых в соответствии с гл. 1.7 ПУЭ, ГОСТ Р 50571.10-96, ГОСТ Р 50571.21-2000, ГОСТ Р 50571.22-2000. Вторая задача решается с помощью прокладки специаль­ных заземляющих или нулевых защитных проводников, соединенных в единую электрическую соединительную сеть.


В соответствии с ГОСТ Р 50571.10-96 в случае, когда заземление требуется как для защиты, так и для нормальной работы электроустановки, в первую очередь сле­дует соблюдать требования, предъявляемые к мерам защиты.


Наличие замкнутых контуров и связей между системами заземления различного назначения может сопровождаться возникновением межсистемных помех заземле­ния, которые не устраняются установкой источников бесперебойного питания и других устройств кондиционирования (улучшения) мощности без гальванической развязки. В ряде случаев, формально выполняя требования ГОСТ 464-79 по органи­зации отдельной системы заземления для средств телекоммуникаций, создают от­дельную систему заземления, например для учрежденческой цифровой телефонной станции. При этом не обращается внимания на то, что стандарт требует отдельной системы заземления для полюса системы питания постоянного тока. Питание обо­рудования от общей сети переменного тока с глухозаземленной нейтралью и вы­полнение, казалось бы, обособленного заземления как раз приводят к ситуации, ко­гда образуются контура заземления, вызывающие неустойчивую работу оборудова­ния. Контур заземления, в отличие от жаргонного «контура заземления» (соедине­ния горизонтальных заземлителей в земле), является нежелательным и образуется при наличии связи между двумя заземлителями (рис. 6.1).



Рис. 6.1. Контур заземления


В образовавшемся контуре заземлитель 1 - электрическая связь (проводник) - заземлитель 2 - среда (земля) могут наводиться то­ки от внешних электромагнитных полей или протекать блуждающие токи сторонних нагрузок. Все это приводит к электромагнитным по­мехам в работе оборудования. Ло­кальные вычислительные и теле­коммуникационные сети зачастую имеют в своем составе оборудова­ние связи (антенны, модемы и пр.) и подвержены влиянию помех, в том числе от разрядов молнии, поэтому для них важна высокая помехозащищенность. В силу этого обстоятельства устранению кон­туров следует уделять особое внимание при проектировании и эксплуатации элек­троустановок зданий.


На практике встречается также ошибочное заземление отдельного электропри­емника или группы электроприемников на обособленный заземлитель, не связан­ный с нейтралью трансформатора (рис. 6.2). Эта схема заземления напоминает схе­му ТТ, с той лишь разницей, что при этом нарушается п. 1.7.39 ПКЭ, который гласит: «В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемни­ков без их зануления не допускается...». Это требование вызвано тем, что обеспе­чить электробезопасность при такой схеме невозможно. На рис. 6.2 показан вынос потенциала при коротком замыкании на корпус электроприемника, заземленного на обособленный заземлитель.




Рис. 6.2. Вынос потенциала на незанулённый корпус оборудования


Потенциал на корпусе будет обусловлен падением напряжения в фазном про­воднике до точки КЗ и падением напряжения в сопротивлении заземлителя 2, в среде (в земле и конструкциях) и в сопротивлении заземлителя 1. Сопротивление цепи короткого замыкания при этом будет больше сопротивления цепи «фаза-ноль», ис­ходя из параметров которого выбирается защитный автомат, и короткое замыкание, скорее всего, не будет отключено действием максимальной токовой защиты. При этом на корпус будет вынесен потенциал, близкий к фазному напряжению, что соз­даст угрозу для жизни людей. Отключение КЗ произойдет за счет действия тепло­вой защиты автоматического выключателя, но время отключения КЗ при этом пре­высит нормируемые значения.


Характеристики устройств защиты и полное сопротивление цепи «фаза-ноль» должны обеспечивать автоматическое отключение питания в пределах нормированного времени при замыканиях на открытые проводящие части.

Это требование вы­полняется при соблюдении следующего условия:


Z s I a

где Z s - полное сопротивление цепи «фаза-ноль»; I а - ток, меньший тока корот­кого замыкания, вызывающий срабатывание устройства защиты за время, являю­щееся функцией номинального напряжения Uo; Uo - номинальное напряжение (действующее значение) между фазой и землей.


Предельно допустимые времена отключения для систем TN составляют:


Uo = 220 В, время отключения - 0,4 с;

Uo = 380 В, время отключения - 0,2 с.


Таким образом, неправильно выполненное заземление приводит к образованию нежелательных контуров и вызывает электромагнитные помехи в работе оборудо­вания, а также создает угрозу для жизни людей.

Введение

Описание, характеристика предприятия

Краткая характеристика цеха

Характеристика выполняемых работ

Заземление и зануление электрооборудования. Исполнения зануления. Монтаж устройств защитного заземления

1 Общие сведения

2 Наружный контур заземления и его монтаж

3 Измерение сопротивлений заземляющих устройств

4 Монтаж внутренней заземляющей сети

5 Требования ПУЭ к заземлению электроустановок

Техника безопасности

1 Организация рабочего места электромонтера

2 Требования безопасности перед началом работы

3 Требования безопасности во время работы

4 Требования безопасности в аварийных ситуациях

5 Требования безопасности по окончании работы

Список литературы

Введение

Электротехническая промышленность играет важную роль в решении задач электрификации, технического перевооружения всех отраслей народного хозяйства, механизации, автоматизации и идентификации производственных процессов.

Объем производства электроэнергии в России к 2005 году превышает 1 трлн. кВ/ч. Установленная электрическая мощность отдельных предприятий достигает 3 млн. кВт, а количество электрических машин на них - 100 тыс. шт. годовое потребление электроэнергии на ряде предприятий уже сегодня превышает 5 млрд. кВ/ч. За каждые 10 лет производство и потребление электроэнергии в мире увеличивается примерно в два раза. Рост производительности труда, развитие электроемких электротехнических процессов, реализация мероприятий по охране окружающей среды, внедрение прогрессивных технологий приведут в период 1999-2010 гг. к дальнейшему повышению электровооруженности предприятий.

Важную роль в развитии отечественной электротехники сыграли труды русских ученных и изобретателей П.Н. Яблочкова, А.Н. Лодыгина, М.О. Доливо-Добровольского и др. приоритет в создании и применении трехфазной системы переменного тока принадлежит М.О. Доливо-Добровольскому, который в 1891 г. Осуществил передачу электрической энергии мощностью около 150 кВт при напряжении 15 кВ на расстоянии 175 км. Им же были созданы синхронный генератор, трехфазный трансформатор и асинхронный двигатель.

В 1920 г. Всероссийский съезд Советов утвердил Государственный план электрификации России (ГОЭЛРО), который предусматривал в течение 10-15 лет строительство тридцати новых районных электростанций с объемом производства энергии до 8,8 млрд кВт*ч в год. Этот план был выполнен за 10 лет. С 1930 г. Крупные городские районные тепловые электростанции стали постепенно объединять в электрические системы, которые и настоящее время остаются главными производителями электроэнергии для подавляющего большинства предприятий.

До 1960 г. Мощность крупных генераторов тепловых электростанций составляла 100 МВт. На одной электростанции устанавливали шесть - восемь генераторов. Поэтому мощность крупных ТЭЦ составляла 600-800 МВт. После освоения блоков 150-200 МВт мощность крупных электростанций повысилась до 1200 МВт, а после освоения блоков 300 МВт - до 2400 МВт. В настоящее время вводят тепловые электростанции мощностью 6000 МВт с блоками 500-800 МВт.

Эффективность объединения энергосистем экономией суммарной установленной мощности генераторов за счет совмещения максимумов нагрузки энергосистем, сдвинутых во времени.

В период рыночных реформ в России электроэнергетика, как и прежде является важнейшей жизнеобеспечивающей отраслью страны. В ее составе свыше 700 электростанций общей мощностью 215,6 млн. кВт.

Единая энергосистема России - один из крупнейших в мире высокоавтоматизированных электроэнергетических комплексов, обеспечивающих производство, передачу и распределение электроэнергии и централизованное оперативно-диспечерское управление этими процессами. В составе ЕЭС России параллельно работают около 450 крупных электростанций различной ведомственной принадлежности, суммарной мощности более 200 млн. кВт, а также имеются свыше 2,5 млн. км линий электропередачи различных напряжений, в том числе 30 тысяч км системообразующих ЛЭП напряжением 500, 750, 1150 кВ.

Обслуживание электроустановок промышленных предприятий осуществляют сотни тысяч электромонтеров, от квалификации которых во многом зависит надежная и бесперебойная работа электроустановок. Персонал должен знать основные требования Правил технической эксплуатации электроустановок потребителей, ГОСТов и других директивных материалов, а также устройство электрических машин, трансформаторов и аппаратов, умело использовать материалы, инструмент, приспособление и оборудование, применяемые при эксплуатации электроустановок.

1. Описание, характеристика предприятия

«Омскшина» завод является одним из ведущих предприятий химической промышленности Омской области. Завод вошел в холдинг СИБУР - Русские шины с 1 января 2006 г., в который также входят почти все российские предприятия шинной промышленности. Готовой продукцией завода являются автомобильные и авиационные шины разного ассортимента.

Предприятие находится недалеко от центра города в промышленной зоне города по улице Будеркина дом 2. фактически основное строительство завода началось осенью 1941 г. В Омск были эвакуированы Ярославский и Ленинградский шинные заводы. 24 февраля 1942 г. с конвейера завода сошла первая шина размером 6,50-20 (для «полуторки»). Этот день принято считать Днем рождения Омского шинного завода. В 1944 г. заводу дважды вручалось Красное знамя Государственного комитета Обороны СССР.

На сегодняшний день «Омскшина» - второе крупнейшее предприятие по производству шин на территории России. В истории омского шинного четко прослеживается три этапа:

С 1942 по 1964 гг. - период становления и развития в военные и послевоенные годы;

С 1964 по 1993 гг. - время расширения производства, достижения высоких экономических показателей и развития социальной сферы, закончившееся периодом спада производства;

С 1993 г. по настоящее время - период приватизации и перестройки производства, завоевания новых позиций на рынке.

2. Краткая характеристика цеха

Готовой продукцией автокамерного цеха являются автомобильные камеры различного ассортимента, а также товарная резина.

Оборудование которым оснащен автокамерный цех и его количество представлено в таблице 1.

Таблица 1. − Перечень оборудования установленного в автокамерного

№ п/пНаименование оборудованияКоличество1Резиносмеситель РС 270×3032Резиносмеситель РС 270×4033Гранулятор МЧТ 380/450 34Сушилка барабанная для гранул35Вальцы индивидуальные См 2100 660/66046Вальцы индивидуальные См 2130 660/66027Вальцы индивидуальные Пд 800 550/55018Вальцы индивидуальные Пд 630 315/31519Вальцы индивидуальные Пд 320 160/160110Вальцы индивидуальные Др 800 490/610111Вальцы агрегатные См 2100 660/660312Турбовоздуходувка ТВ - 80 - 1,6813Агрегат измельчения резиновых отходов АПР 420/400114Машина одночервячная МЧТ - 250 315Машина одночервячная МЧТ - 200116Агрегат камерный317Агрегат флепповый118Станок стыковочный для ездовых камер ВМИ ЕПЕ1319Станок стыковочный для ездовых камер МИНЛАНД520Станок стыковочный для ездовых камер РОССИЯ221Индивидуальный вулканизатор камер ИВК - 458122Индивидуальный вулканизатор камер ИВК - 552723Индивидуальный вулканизатор камер ИВК - 75924Индивидуальный вулканизатор камер ИВК - 85225Вулканизатор ободных лент ВОЛ4926Пресс вулканизационный гидравлический1427Станок шероховальный 828Станок гиба вентилей929Станок обрезки камерных рукавов230Станок пробивки отверстий во флеппах431Станок для вырубки пяток вентилей132Устройство для заворачивания золотников433Нож пневматический для резки каучука334Установка проверки автокамер на герметичность2

3. Характеристика выполняемых работ

Во время производственной практики я занимался различными работами, связанные непосредственно с моей специальностью - электромонтер. Каждый рабочий день начинался с обхода оборудования и осмотра электроустановок. Также в свою очередь проверялись средства индивидуальной защиты: коврики, боты, перчатки. После осмотра оборудования делалась запись в «Сменном (оперативном) журнале для дежурного персонала по учету работ технического обслуживания и ремонта электрооборудования». Так же в журнале фиксировался перечень работы, задание на смену. Помимо определенного задания приходилось выполнять работы по устранению неполадок мешающих производительности труда основного производства, т.е. замена сгоревшей лампочки над вулканизатором камер или замена сгоревшего двигателя на пробойнике второй шприц машины. Отключение и запуск оборудования (после выходного дня) регистрируется в журнале.

Приходилось заниматься слесарными работами, изготовление крепежных элементов для временной проводки. Так же приходилось выполнять такелажные работы на прямую не связанные с монтажом или обслуживанием, увезти сгоревший электродвигатель на перемотку.

Выполнение технического обслуживания производилось на трансформаторной подстанции №26, обслуживание электрических машин (электродвигателя), а так же на распределительном устройстве 10 кВт. Обслуживание представляла собой очистку установки от грязи и пыли, протяжка болтовых соединений.

4. Заземление и зануление электрооборудования. Исполнения

зануления. Монтаж устройств защитного заземления

.1 Общие сведения

При повреждении изоляции электрооборудования различные его металлические нетоковедущие части могут случайно оказаться под напряжением, создавая опасность поражения человека электрическим током. Прикасаясь к оборудованию с поврежденной изоляцией, человек становиться проводником для тока в землю. Токи от 0,05 А опасны для человека, а токи 0,1 А смертельны.

Значение тока, проходящего в землю, зависит от электрического сопротивления тела человека и напряжения поврежденной установки. Сопротивления тела человека колеблется в широких пределах: от нескольких сотен до тысяч Ом, поэтому опасность для его жизни и здоровья могут представлять установки и с относительно небольшим напряжением по отношению к земле.

Напряжением относительно земли при замыкании на корпус является напряжение между этим корпусом и точками земли, находящиеся вне зоны растекания токов в земле, но не ближе 20 метров от этой зоны.

Одной из основных мер защиты людей от поражения электрическим током при прикосновении к установкам, случайно оказавшиеся под напряжением, является устройство защитного заземления.

Заземление - это преднамеренное электрическое соединение какой-либо части установки с землей, выполняемое при помощи заземлителей и заземляющих проводников.

Заземлитель - это металлический проводник или группа проводников, заложенных в грунт.

Заземляющий проводник - это металлический проводник, соединяющий заземляемые части электроустановки с заземлителями.

Заземляющим устройством называют совокупность заземлителей и заземляющих проводников. Безопасность людей достигается только в том случае, если заземляющие устройство будет иметь во много раз меньшее сопротивление, чем наименьшее сопротивление тела человека.

Сопротивлением заземляющего устройства называется сумма сопротивлений заземлителя относительно земли и заземляющих проводников, и оно должно быть в пределах, определенных предварительным расчетом. Максимально допустимое сопротивление заземляющих устройств определяется напряжением установки, значениями токов замыкания на землю, наличием нейтрали и некоторыми другими условиями и устанавливаются действующими ПУЭ (правила устройства электроустановок). Ток замыкания на землю - ток, проходящий через землю в месте замыкания.

Для защиты людей от поражения электрическим током при повреждении изоляции металлические нетоковедущие части электрооборудования заземляют. Комплекс мер и технических устройств, предназначенных для этой цели, называют защитным заземлением. Защитное заземление представляет собой преднамеренное соединение с землей под средством заземляющих проводников и заземлителей нетоковедущих металлических частей электроустановок (рукояток приводов разъединителей, кожухов трансформаторов, фланцев опорных изоляторов, корпусов трансформаторных подстанций и т.п.).

Задача защитного заземления заключается в создании между металлическими конструкциями или корпусом защищаемого устройства и землей электрического соединения достаточно малого сопротивления; при однофазных замыканиях на землю или на корпус токопроводящих поврежденных частей электроустановок такое соединение обеспечивает снижения тока до значения, не угрожающие жизни и здоровью человека, так как электрическое сопротивление его тела во много раз выше сопротивления металлического проводника, соединенного с землей. Замыкание на землю это случайное электрическое соединение находящихся под напряжением частей электроустановки непосредственно с землей или с ее конструктивными частями, не изолированы от земли.

Защитное заземление принимают во всех сетях с изолированной нейтралью и в сетях с напряжением выше 1000 В с заземленной нейтралью. В последних точки однофазного замыкания протекают через землю и вызывают отключение аварийного участка.

Рисунок 1. − Схема трехфазной сети с изолированной нейтралью (а) и

режимы ее работы при прикосновении человека к линейному проводу

(б); заземление одного линейного провода и прикосновение человека к

другому (в); прикосновение человека к линейному проводу в системе с

заземленной нейтралью (г) и в системе с заземленными нейтралью и

другими линейными проводом (д)

В сети с глухозаземленной нейтралью электроприемники получают питание от обмоток источника тока, соединенных в звезду, нулевая точка которых надежно соединена с землей. Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление.

Заземление нейтрали. В ПУЭ указывается, что городские электрические сети свыше 1000 В должны выполняться трехфазными с изолированной нейтралью, а распределительные сети в новых городах трехфазными четырехпроводными с наглухо заземленной нейтралью при напряжении 380/220 В. Однако распространены также сети с напряжением 220/127 В с изолированной нейтралью, в которых применяются пробивные предохранители.

Обмотки силовых трансформаторов отечественного производства с напряжением 110 кВ и выше также рассчитываются на работу с заземленной нейтралью, так как они имеют неполную изоляцию нулевых выводов.

На рис. 1 показаны вторичные обмотки трансформатора Тр, питающего четырехпроводную сеть напряжением 380/220 В, нейтраль которой изолирована. Пусть в рассматриваемый момент изоляция совершенно исправна. Тем не менее три сопротивления R,соединенные в звезду, нейтралью которой является земля, условно показывают не совершенство изоляции проводов, которая в какой-то степени все же проводит ток. Три конденсатора С, соединены в звезду, нейтралью которой также служит земля, условно изображают электрическую емкость проводов относительно земли, что в электроустановках переменного тока весьма важно, так как емкость проводит переменный ток.

Какие же напряжения действуют в рассматриваемой электроустановке? Между линейными проводами напряжение 380 В, а между каждым линейным проводом и нейтралью трансформатора - 220 В, так как земля оказалась нейтралью соединений звезд из трех равных сопротивлений R и трех равных емкостей С. Если же линейным проводом относительно нейтрали трансформатора имеет такое же напряжение, как и относительно земли, то между нейтралью трансформатора и землей напряжение равно нулю, но, конечно, только если сеть не нагружена либо нагрузка всех фаз одинакова.

Рисунок 2. − Работа схемы трехфазной сети с глухозаземленной

нейтралью при прикосновении человека к токопроводящему проводу

(а), заземления (б) и занулении (в) электродвигателя

Прикосновение человека, стоящего на земле, к одному из линейных проводов небезопасно, так как через несовершенную изоляцию провода и тело человека пройдет ток (рис. 2). Сила этого тока, а следовательно, и степень опасности определяются значениями сопротивлений, емкостей конденсаторов и фазным напряжением. В этом случае человек находится под напряжением 220 В.

Но что произойдет, если один из линейных проводов заземлится, а человек, стоящий на земле, прикоснется к другому линейному проводу? Из рис. 3 видно, что человек окажется теперь не под фазным, а под линейным напряжением 380 В, что значительно опаснее.

В сетях с заземленной нейтралью человек, стоящий на земле и прикоснувшийся к линейному проводу, попадает под фазное напряжение. Если при этом заземляется другой линейный провод, то предохранитель перегорит, но повышения напряжения с фазного до линейного не произойдет.

Прикосновение к токопроводящему элементу в сети с глухозаземленной нейтралью очень опасно, так как при этом образуется замкнутая цепь, по которой под действием напряжения с фазы А через тело человека, обувь, пол, землю и заземление нейтрали течет поражающий ток. Опасно также прикосновение к электроприемнику, в котором произошло замыкание на заземленный корпус.

Кроме обеспечения минимального сопротивления заземляющего устройства, важно также обеспечить равномерное распределения напряжения вокруг защищаемого аппарата и по всей площади электроустановки. Максимальный потенциал (U3) имеют заземлитель, соединенный с корпусом поврежденного аппарата, и грунт, соприкасающийся с заземлителем. По мере удаления от заземлителя потенциал на поверхности земли падает, достигая постепенно нулевого значения. Сопротивления грунта на этом расстоянии называется сопротивлением растеканию.

Человек, прикасающийся к корпусу аппарата с поврежденной изоляцией, оказывается под напряжением, значение которого определяется падением потенциала на участке между точкой прикосновения его к аппарату и точкой касания земли ногами. Это напряжение называется напряжением прикосновения (Uприк). Между ступнями человека, приближающегося к поврежденному аппарату, также будет разность потенциалов, называемая напряжением шага (Uшаг), значение которого зависит от ширины шага и расстояния до места повреждения.

Рисунок 3. − Схема возникновения шагового напряжения

Напряжение шага и напряжение прикосновения возникает, если в заземленной сети происходит однофазное замыкание на землю. Пусть через вертикальный заземлитель З (рис. 3.), расположенный в точке 0, в землю течет ток однофазного замыкания. По мере удаления от заземлителя плотность тока и вызываемое им падение напряжения непрерывно уменьшается, т.е. если в точке 0 максимальный потенциал, то потенциал в точке грунта, расположенной далее 20 м от заземлителя, практически равен нулю. Изменение потенциала грунта в зависимости от расстояния от точки 0 характеризуется кривой АМ. Разделив расстояние 0М на отрезки длиной 0,8 м (средняя ширина шага человека), по этой кривой легко узнать, под какое напряжение попадает человек, находящийся на определенном расстоянии от заземлителя. Например, если ноги идущего человека находятся на расстоянии 1,6 и 2,4 м от заземлителя, то потенциалы грунта характеризуются точками В и Г кривой АМ, а отрезок ВЖ в определенном масштабе определяет разность потенциалов, т.е. напряжение.

Напряжение, под которым может оказаться человек, идущий в зоне растекания по земле тока однофазного замыкания, называют напряжением шага. Это напряжение уменьшается по мере удаления от заземлителя (ВЖ<БЕ<АД) и на расстоянии более 20 м от заземлителя оно практически исчезает.

Поражения людей из-за появления напряжения шага в случае однофазного замыкания на землю очень редки вследствие малых значений этого напряжения. Но если это напряжение возникает при падении на землю оборвавшегося провода воздушной линии, оно может достигать больших значений. В таких случаях выходить из зоны действия напряжения шага следует, используя сухие доски, листы пластика и другие изоляционные материалы, а при их отсутствии - мелкими шагами.

Опасно также напряжение, возникшее при работе защитного заземления, в режиме однофазного замыкания на землю. Если через заземлитель в землю течет ток I3, то на сопротивление заземляющего устройства R3 он создает падения напряжения I3 R3, т.е. напряжения прикосновения. Прикасаясь в этом случае к корпусу аппарата с поврежденной изоляцией, человек может попасть либо под полное напряжение I3 R3, либо под его часть. Наиболее опасны случаи, когда приемник с поврежденной изоляцией и человек, прикоснувшиеся к нему, находятся на расстояниях более 20 м от заземлителя, и если человек стоит непосредственно на земле в сырой подбитой гвоздями обуви.

4.2 Наружный контур заземления и его монтаж

Для обеспечения безопасности людей осуществляют защитное заземление электроустановок. Заземлению подлежат:

металлические кожухи и корпуса электроустановок, различных агрегатов и приводов к ним, светильников, металлические каркасы распределительных щитов, щитов управления, щитков и шкафов;

металлические конструкции и металлические корпуса кабельных муфт, металлические оболочки кабелей и проводов, стальные трубы электропроводки;

вторичные обмотки измерительных трансформаторов.

Заземлению не подлежат:

арматура подвесных и штыри опорных изоляторов, оборудование установленное на заземленных металлических конструкциях, так как на их опорных поверхностях должны быть предусмотрены зачищенные незакрашенные места для обеспечения электрического контакта;

корпуса электроизмерительных приборов и реле, установленные на щитках, щитах, шкафах, а также на стенах камер распределительных устройств;

металлические оболочки контрольных кабелей в случаях, которые оговариваются в проекте особо.

Защитное заземление состоит из наружного устройства, представляющий собой искусственные или естественные заземлители, проложенные в грунте и соединенные между собой в общий контур, и внутренней сети, состоящей из заземляющих проводников, прокладываемых по стенам помещения, в котором находится установка, и присоединяемых к наружному контуру.

Металлические заземлители, заложенные в грунт, имея большую площадь соприкосновения с землей, обеспечивают малое электрическое сопротивление контура.

Для заземления электроустановок в первую очередь должны использоваться естественные заземлители - проложенные в земле металлические трубопроводы (кроме трубопроводов с горючими, легковоспламеняющимися и взрывчатыми жидкостями или газами); обсадные трубы; металлические и железобетонные конструкции зданий и сооружений, надежно соединенные с землей; свинцовые оболочки кабелей, проложенных в земле, и нулевые с повторными заземлителями рабочие провода воздушных линий напряжением до 1000 В. Естественные заземлители должны присоединяться к заземляющей магистрали электроустановки не менее чем в двух местах.

Присоединение заземляющих проводников к заземлителями, а также соединение заземляющих проводников между собой производится сваркой, причем длина нахлестки должна быть равна двойной ширине проводника при прямоугольном его сечении и шести диаметрам - при круглом. При Т - образном соединении внахлестку двух полос длина нахлестки определяется их шириной.

Присоединение заземляющих проводников к трубопроводам выполняется сваркой (рис. 4.) или, если это не возможно, хомутами со стороны ввода трубопроводов в здание. Сварочные швы, расположенные в земле, после монтажа для защиты от коррозии покрываются битумом.

Рисунок 4. - Присоединение к трубопроводу сваркой заземляющего

проводника с прямоугольным (а) и круглым, (б) сечением и хомутом

Если естественных заземлителей нет или они не удовлетворяют расчетным требованиям, монтируют контур наружного заземления из искусственных заземлителей, которые могут быть вертикальными, горизонтальными и углубленными.

Вертикальные заземлители - это вбитые в землю стальные трубы или угловая сталь, а также ввернутые в землю стальные стержни. Проложенные в землю стальные полосы толщиной не менее 4 мм или круглая сталь диаметром не менее 10 мм являются горизонтальными искусственными заземлителями, играющими роль самостоятельных элементов заземления или служащие для связи друг с другом вертикальных заземлителей.

Разновидностью горизонтальных заземлителей являются углубленные заземлители, закладываемые на дно котлованов при сооружении фундаментов опор воздушных линий и строящихся зданий. Их изготавливают в мастерских монтажной организации после предварительного замера из полосовой стали с сечением 30×4 мм или круговой стали диаметром 12 мм. Форма заземлителей, их число сечение и размещение определяется проектом.

В качестве заземляющих проводников могут использоваться:

естественные проводники, т.е. металлические конструкции зданий;

металлические конструкции производственного назначения (подкрановые пути, каркасы распределительных устройств, галереи, площадки, шахты лифтов, подъемников);

стальные трубы электропроводок;

металлические оболочки кабелей (но не броня).

Для зануления достаточно во всех случаях алюминиевой оболочки кабелей, а свинцовой, как правило не достаточно.

Во взрывоопасных помещениях применяются специально проложенные заземляющие проводники, а естественные рассматриваются как дополнительная мера защиты. При заземленной нейтрали (сетей 380/220 или 220/127 В) зануление электроприемников взрывоопасных установок должно производиться отдельно выделенными жилами проводок и кабелей; при изолированной нейтрали для заземления могут применяться стальные проводники.

Использование голых алюминиевых проводников в качестве заземляющих запрещается из-за быстрого разрушения их вследствие коррозии.

Монтаж наружного контура заземления и прокладка внутренней заземляющей сети производится по рабочим чертежам проекта электроустановки.

Выполнение пробивных работ, установка закладных частей, подготовка свободных отверстий, борозд и других проемов, закладка проходных труд в стены и фундаменты, рытье земляных траншей для прокладки наружного контура заземления осуществляется на первой стадии подготовки к элементарным работам.

Внешний контур заземления прокладывается в земляных траншеях глубиной 0,7 м. искусственные заземлители в виде отрезков стальных труб, круглых стержней и уголков длинной 3…5 м заглубляются в грунт свертыванием или вибропогружением так, чтобы головка электрода оказалась на глубине 0,5 м от поверхности земли. Заглубленные заземлители соединяют друг с другом стальными полосами с сечением 40×4 мм с помощью сварки. Места приварки полосы к заземлителям покрывают разогретым битумом для защиты от коррозии. Расположенные в земле заземлители и заземляющие проводники не должны быть окрашенными. Траншеи с уложенными в них заземляющими проводниками и заземлителями засыпают землей, не содержащей камней и строительного мусора.

Естественные заземлители связываются с заземляющими магистралями электроустановки не менее чем двумя проводниками, присоединенными в разных местах. Соединение заземляющих проводников с протяженными заземлителями (трубопроводы) выполняются вблизи от вводов их в здания при помощи сварки или хомутов, контактная поверхность которых обслуживается. Трубы в местах накладки хомутов зачищаются. Места и способы присоединения приемников тока выбираются с таким расчетом, чтобы при разъединении трубопровода для ремонтных работ обеспечивалось непрерывное действие заземляющего устройства. У водомеров и задвижек устраивают обходные соединения.

Внутренняя заземляющая сеть выполняется открытой прокладкой внутри помещения по строительным поверхностям голых стальных проводников с прямоугольным и круглым сечениями. На рисунке 5 показаны примеры прокладки, крепления и соединения проводников защитного заземления.

Рисунок 5. - Варианты прокладки (а) и крепления плоских и круглых

шин обоймами (б), электросваркой (в) и встреливаемыми дюбелями (г),

сваркой внахлестку (д) и приваркой к электроду (е)

Открыто прокладываемые голые заземляющие проводники располагаются вертикально, горизонтально или параллельно наклонным конструкциям зданий. Проводники с прямоугольным сечением устанавливаются большой плоскостью к поверхности основания. На прямоугольных участках прокладки проводники не должны иметь заметных на глаз неровностей и изгибов. Заземляющие проводники, прокладываемые по бетону или кирпичу в сухих помещениях, не содержащих едких паров и газов, укрепляются непосредственно на стенах, а в помещениях сырых, особо сырых, с едкими парами и газами - на опорах на расстоянии не менее 10 мм от поверхностей стен. В каналах заземляющие проводники располагаются на расстоянии не менее 50 мм от нижней поверхности съемного перекрытия. Расстояние между опорами для крепления заземляющих проводников на прямых участках составляет 600…1000 мм.

Заземляющие проводники в местах перекрещивания их с кабелями и трубопроводами, а также в других местах, где возможны механические повреждения, защищают трубами или иными способами.

В помещениях заземляющие проводники должны быть доступны для осмотра, но это требование не относится к нулевым жилам и металлическим оболочкам кабелей, трубопроводам скрытой проводки и металлоконструкциям, находящимся в земле. Через стены заземляющие проводники прокладываются в открытых проемах, трубах или иных жестких обрамлениях. Каждый заземляемый элемент электроустановки должен присоединяться к заземляющей магистрали при помощи отдельного ответвления. Последовательное подключение к заземляющему проводнику нескольких заземляемых элементов запрещается.

Нейтрали трансформаторов, заземляемые наглухо или через аппараты, компенсирующие емкостной ток, присоединяются к заземлителю или к сборным заземляющим шинам при помощи отдельных заземляющих проводников. Заземляемые выводы вторичных обмоток измерительных трансформаторов присоединяются к их кожухам заземляющими болтами.

Гибкие перемычки, служащие для заземления металлических оболочек и брони кабелей, прикрепляются к ним бандажом из проволоки и припаиваются, а затем соединяются болтовыми контактами с кабельной заделкой (муфтой) и заземляющей конструкцией. Сечение гибких перемычек должны соответствовать сечениям заземляющим проводников, принятой для данной электроустановки. Места соединения заземляющей перемычки с алюминиевой оболочкой кабеля после пайки покрываются асфальтовым лаком или горячим битумом.

Соединение друг с другом заземляющих проводников и присоединение их к конструкциям установки выполняются сваркой, а подключение к корпусам аппаратов и машин - сваркой или надежным болтовым соединением. Для предотвращения ослабления контакта при сотрясениях и вибрациях устанавливаются контргайки, пружинные шайбы и т.д.

Контактные поверхности на заземляемом электрооборудовании в местах присоединения заземляющих проводников, а также контактные поверхности между заземленным оборудованием и конструкциями, на которых оно установлено, должны зачищаться до металлического блеска и покрываться тонким слоем вазелина.

4.3 Измерение сопротивлений заземляющих устройств

защитное заземление электрооборудование сопротивление

Заземление надежно выполняет свои защитные функции лишь в том случае, если его сопротивление достаточно мало. Например, в сетях с глухозаземленной нейтралью большое сопротивление заземляющего устройства может привести к тому, что сила тока, возникшего при пробои изоляции, окажется недостаточной для срабатывания отключающей защитной аппаратуры. Поэтому ПУЭ строго ограничивают сопротивления заземляющих устройств.

При заземлении электроустановок напряжением до 1000 В с глухозаземленной нейтралью необходимо нейтрали их источников питания (генераторов, трансформаторов) надежно присоединить к заземлителю, который должен располагаться в непосредственной близости от них. Если трансформаторная подстанция находится внутри цеха, допускается выносить заземлители на внешнюю сторону стены здания. Сопротивление заземляющего устройства, к которому присоединяются нейтрали генераторов и трансформаторов, должны быть не более 4 Ом, если же их мощность 100кВ*А и ниже, то сопротивление, то сопротивление заземляющего устройства не должно превышать 10 Ом; при параллельной работе источников питания сопротивление заземления может достигать 10Ом только в случае, если их суммарная мощность не превышает 100 кВ*А.

Рисунок 6. - Электроизмерительный прибор:

Цилиндр;

Алюминиевая рамка;

Стрелка;

Шкала

После окончания всех монтажных работ в обязательном порядке измеряются, соответствует ли сопротивление заземления требованиям ПУЭ. Чаще всего измерения производят с использованием амперметра и вольтметра или прибора МС-08.

Электроизмерительные приборы - амперметры и вольтметры, в которых используется ориентационное действие магнитного поля на контур с током, устроены следующим образом. Рис. 6 на легкой алюминиевой рамке 2 прямоугольной формы с прикрепленной к ней стрелкой 4 намотана катушка. Рамка укреплена на двух полуосях ОО`. В положения равновесия ее удерживают две тонкие спиральные пружины 3, момент сил упругости которых пропорционален углу отклонения стрелки. Катушка помещаются между полюсами постоянного магнита с наконечниками специальной формы. Внутри нее располагается цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линии магнитной индукции в области нахождения витков катушки рис. 7, т.е. при любом положении катушки момент сил магнитного поля максимален и при неизменной силе тока один и тот же. Векторы F и -F соответствуют силам магнитного поля, которые действуют на катушку и создают вращающий момент. Катушка с током поворачивается до тех пор, пока момент сил упругости пружины не уравновесит момент сил магнитного поля. При увеличении силы тока в два раза стрелка также поворачивается на угол, в двое больший, так как максимальный момент сил М магнитного поля прямо пропорционален силе тока: М~I. Установив, какому углу поворота стрелки соответствует известное значение силы тока и проградуировав электромагнитный прибор, его можно использовать для измерения в цепях постоянного и переменного тока. Амперметры и вольтметры являются самыми распространенными щитовыми приборами вследствие простоты устройства сравнительно хорошей переносимости перегрузки. Недостатками этих приборов являются невысокая точность, большая потребляемая мощность (до 10 Вт), ограниченный частотный диапазон и чувствительность к внешним магнитным полям.

Рисунок 7. − Схема действия сил в электроизмерительном приборе

Рисунок 8. − Схема измерения сопротивления заземления с помощью

амперметра и вольтметра

Щитовые амперметры выпускают класса 1,0; 1,5; 2,5 на токи до 300 А с прямым включением и до 15 А наружными трансформаторами тока. Щитовые вольтметры тех же классов точности выпускаются на напряжения до 600 В с прямым включением и до 750 кВ с трансформаторами напряжения.

При прямом включении измерительных приборов рис. 8 между заземлителем (З), сопротивление которого относительно земли надо измерить, вспомогательным токовым электродом (Т) пропускают однофазный переменный ток Ix и измеряют его амперметром, а, погрузив в землю между электродами З и Т вспомогательный потенциальный стержень (П), измеряют вольтметром напряжение Ux между ним и заземлителем З.

Измерения сопротивления заземлителя с использованием амперметра, вольтметра и трансформатора производится в следующем порядке. В землю забивают электроды П и Т (заостренные на концах стальные стержни длинной около 1м). отдельными проводами к заземлителю и этим электродам присоединяют амперметр и вольтметр. Вольтметром проверяют отсутствие напряжения между заземлителем и стержнем П. Если прибор показывает какое либо напряжение, изменяя направления разноса стержней или пропорционально увеличивая расстояние между ними, добиваются его нулевого значения. После этого полностью вводят реостат с сопротивлением R и включают в сеть трансформатор Тр. С помощью реостата постепенно увеличивают силу тока и следят за показаниями амперметра и вольтметра (одновременный отчет по приборам производится в момент, когда их показания можно зафиксировать с наибольшей точностью). По данным измерения рассчитывают сопротивление заземлителя, используя закон Ома:

R3 = Ux/Ix.

Производят не менее трех измерений и для расчета принимают среднеарифметическое полученных значений.

Преимущество такого измерения состоит в точности и возможности определения малых очень малых сопротивлений (до сотых долей ома); недостатками являются необходимость наличия двух измерительных приборов и трансформатора, влияние колебаний напряжения сети на точность измерения, отсутствие непосредственного отчета и повышенная опасность для людей, производящих измерения. Этот метод в основном используется для измерения сопротивлений заземлителей электростанций и мощных районных трансформаторных подстанций.

Сопротивления заземлителя можно также измерить прибором МС-08 (рис. 9), имеющий три шкалы (10…1000, 1…100 и 0,1…10 Ом), работа которого основана на принципе одновременного измерения тока и напряжения магнитоэлектрическим логометром.

Рисунок 9. - Упрощенная схема прибора МС-08:

Логометр;

Генератор;

Прерыватель тока;

Выпрямитель

Логометром называется показывающий прибор, измеряющий отношение двух электрических величин, в большинстве случаев отношение двух токов. Его применяют для измерения электрических и неэлектрических величин, независящих от тока (сопротивления, сдвига фаз, частоты, температуры, давления, перемещения в пространстве).

Отклонение стрелки большинства измерительных механизмов определяется током, который проходит через этот механизм и может зависеть от измеряемой величины. Например, в электротермометре ток зависит от сопротивления в цепи, так как в нее включен резистор, сопротивление которого изменяется с изменением измеряемой температуру. Но согласно закону Ома ток также пропорционален напряжению. Следовательно, показание прибора будет зависеть не только от измеряемой величины x, а также и от напряжения источника электроэнергии, изменения которого будет вызывать соответствующие погрешности в показаниях прибора. Для устранения влияния напряжения при подобных измерениях широко применяются логометры.

Логометр может иметь измерительный механизм почти любой системы, но широкое распространение получили магнитоэлектрические логометры.

В логометре любой системы вращающей и противодействующей моменты создаются электромеханическими силами и в равной степени зависят от напряжения, поэтому изменение напряжения не изменяет отношения моментов, а следовательно, не влияет и на показания прибора.

Логометр 1 имеет потенциальную токовую рамки, закрепленные под углом и находящиеся в поле постоянного магнита. Сила тока в потенциальной рамке, включенной параллельно заземлителю З, пропорциональна падению напряжения Ux на нем, а ток в рамке, включенной последовательно, пропорционален току Ix, текущему через заземлитель. Угол отклонения обеих рамок логометра в постоянном магнитном поле пропорционален отношению Ux/Ix, равному сопротивлению заземлителя. Прибор имеет генератор 2 постоянного тока с ручным приводом, прерыватель тока 3, выпрямитель 4 и переменный резистор R, служащий для увеличения сопротивления потенциальной цепи до 1000 Ом. На внешней панели прибора размещены клеммы I1, E1, E2 и I2. При вращении рукоятки генератора вырабатывается постоянный ток, который преобразуется прерывателем в переменный и через клемму I2 и вспомогательный потенциальный стержень П сначала уходит в землю, а затем через испытуемый заземлитель З и клеммы I1, E1, соединенные перемычкой, возвращается в прерыватель и далее по токовой обмотке логометра - в генератор. Проходя в земле, переменный ток создает между заземлителем и стержнем П переменное падение напряжения, которое через клеммы E1 и E2 попадает на выпрямитель 4 а затем - на потенциальную рамку логометра.

Вспомогательные электроды П забиваются на определенных расстояниях в плотный грунт на глубину не менее 0,5 м прямыми ударами и без раскачки. Схема включения прибора МС - 08 определяется предполагаемым значением сопротивления заземлителя. Для измерения больших сопротивлений его устанавливают как можно ближе к заземлителю и включают по схеме, рис. 10 а. Для измерения малых сопротивлений или в случае, если прибор невозможно установит вблизи заземлителя, снимают перемычку между клеммами I1 и E1, и включают прибор по схеме, рис. 10 б.

Рисунок 10. - Схема измерения прибором МС - 08 больших (а) и

малых (б) сопротивлений:

Переключатель;

Переменное сопротивление

Далее производят компенсацию сопротивления потенциальной цепи, для чего переключатель 1 устанавливают в положение «Регулировка» и, вращая рукоятку генератора с частотой 120…135 об/мин, с помощью переменного сопротивления 2 добиваются совпадения стрелки прибора с красной чертой на его шкале. После этого переключатель переводят в положение «×1» и, продолжая вращать ручку генератора, снимают значения со шкалы 10…1000 Ом. Если отклонение стрелки при этом не значительное, переключатель переводят в положение «×0,1» (шкала 1…100 Ом) или «×0,01» (шкала 0,1…10 Ом). При этих переключениях стремятся к тому, чтобы стрелка отклонилась не менее чем на 2/3 шкалы, после чего, не прекращая вращения рукоятки генератора, снимают показание и умножают его на коэффициент используемой шкалы.

При измерении сопротивления заземления прибором МС - 08 отпадает надобность в сети переменного тока, что особенно важно при ремонтных и полевых работах. Кроме того, не требуется выполнения расчетов, т.е. измеряемое значение отсчитывается непосредственно по шкале. Недостатками прибора являются значительная масса (около 13 кг) и сравнительно высокая погрешность (до 12,5%).

Данные измерения сравниваются с требованиями ПУЭ. Если сопротивление меньше или равно значению, приведенному в ПУЭ, заземляющее устройство считается пригодным к эксплуатации.

4.4 Монтаж внутренней заземляющей сети

Перед засыпкой траншей к наружному контуру заземления приваривают стальные полосы или круглые стержни, которые затем вводят внутрь здания, где находится оборудование, подлежащие заземлению. Вводов, соединяющие заземлители с внутренней заземляющей сетью, должно быть не менее двух и выполняются они стальными проводниками тех же размеров и сечений, что и соединения заземлителей между собой. Как правило, ввода заземляющих проводников в здание прокладывают в несгораемых металлических трубах, выступающих по обе стороны стены примерно на 10 мм.

В цехах промышленных предприятий и зданиях трансформаторных подстанций электрооборудование, подлежащие заземлению, располагается самым различным образом, поэтому для присоединения его к системе заземления в помещении должны быть проложены заземляющие и нулевые защитные проводники.

В качестве последних используются:

нулевые рабочие проводники (кроме взрывоопасных установок), а также металлические конструкции здания (колоны, фермы);

проводники, специально предназначенные для этой цели;

металлические конструкции производственного назначения (каркасы распределительных устройств, подкрановые пути, шахты лифтов, обрамленные каналы), стальные трубы электропроводок;

алюминиевые оболочки кабелей;

металлические кожухи шинопроводов, короба и лотки;

металлические стационарно положенные трубопроводы любого назначения (кроме трубопроводов горючих и взрывоопасных веществ и смесей, канализации и центрального отопления).

Запрещается использовать в качестве нулевых защитных проводников металлические оболочки трубчатых проводов, несущие тросы, металлорукава, броню и свинцовые оболочки кабелей, хотя сами по себе они должны быть заземлены или занулены и иметь надежные соединения на всем протяжении.

Если естественные магистрали заземления использовать нельзя, то в качестве заземляющих или нулевых защитных проводников применяют стальные проводники, минимальные размеры которых представлены в таблице 2. заземляющие проводники в помещениях должны быть доступны для осмотра, поэтому они (за исключением стальных труб скрытой электропроводки, оболочек кабелей) прокладываются открыто.

Проход через стены выполняется в открытых проемах, несгораемых неметаллических трубах, а через перекрытия - в отрезках таких же труб, выступающих под полом на 30…50 мм. Заземляющие проводники должны проводиться свободно, за исключением взрывоопасных установок, где отверстия труб и проемов заделываются легкопробивными несгораемыми материалами.

Перед прокладкой стальные шины выправляют, очищаются и окрашиваются со всех сторон. Места соединения после сварки стыков покрываются асфальтным лаком или масляной краской. В сухих помещениях можно использовать нитроэмали, а в помещениях с сырыми и едкими парами нужно применять краски, стойкие к химически активной среде.

Таблица 2. − Минимальные размеры заземляющих проводников

Вид проводникаМесто прокладкиВ здании В наружной установке и в землеКруглая стальДиаметр 5 ммДиаметр 6 мм Прямоугольная стальСечение 24 мм2, толщина 3 ммСечение 48 мм2, толщина 4 ммСтальная газопроводная трубаТолщина стенок 2,5 ммТолщина стенок 2,5 мм в НУ и 3,5 мм в землеСтальная тонкостенная трубаТолщина стенок 1,5 мм2,5 мм в НУ в земле не допускаетсяУгловая стальТолщина полок 2 ммТолщина полок 2,5 мм в НУ и 4 мм в земле

В помещениях и наружных установках с неагрессивной средой в местах, доступных для осмотра и ремонта, допускается использование болтовых соединений заземляющих и нулевых защитных проводников при условии, что будут приняты меры против их ослабления и коррозии контактных поверхностей.

Открыто проложенные заземляющие и нулевые защитные проводники должны иметь отличительную краску: на зеленом фоне полоски желтого цвета шириной 15 мм на расстоянии 150 мм друг от друга. Заземляющие проводники прокладываются только параллельно наклонным конструкциям здания.

Проводники с прямоугольным сечением крепятся широкой плоскостью к кирпичной или бетонной стене рис. 11 с помощью строительно-монтажного пистолета или пиротехнической оправе. К деревянным стенам заземляющие проводники прикрепляются шурупами. Опоры для крепления заземляющих проводников должны устанавливаться с соблюдением следующих расстояний: между опорами на прямых участках - 600…1000 мм, от вершин углов на поворотах - 100 мм, от уровня пола помещения - 400…600 мм.

В сырых, особо сырых и помещениях с едкими парами крепить заземляющие проводники непосредственно к стенам не разрешается, они приравниваются к опорам, закрепленными дюбелями рис. 12 С или вмазанным в стену.

Рисунок 11. − Крепление заземляющих проводников дюбелями

непосредственно к стене (а) и с прокладкой (б)

Рисунок 12. - Крепление плоских (а) и круглых (б) проводников

заземления с помощью опор

4.5 Требования ПУЭ к заземлению электроустановок

Заземление или зануление следует выполнять во всех электроустановках переменного тока с напряжением от 380 В и в электроустановках постоянного тока с напряжением от 440 В. В помещениях с повышенной опасностью и особо опасных, а также в наружных электроустановках заземление и зануление выполняется и в установках переменного тока с напряжением выше 42 В и в устройствах постоянного тока с напряжением выше 110 В, а во взрывоопасных установках - при любом напряжении переменного и постоянного токов.

При напряжении до 1000 В в электроустановках с глухозаземленной нейтралью должно быть выполнено зануление. В этих случаях заземление корпусов электроприемников без их зануления запрещается.

Подлежат занулению или заземлению:

Корпуса электрических машин, трансформаторов, аппаратов, светильников;

Вторичные обмотки измерительных трансформаторов;

Каркасы распределительных щитов, щитков и шкафов;

Металлические конструкции распределительных устройств, кабельные конструкции и соединительные муфты, оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, стальные трубы электропроводки, корпуса шинопроводов, лотки, короба, тросы и стальные полосы с укрепленными на них кабелями и проводами;

Электрооборудование, установленное на опорах воздушных линий;

Металлические корпуса передвижных и переносных электроприемников;

Электрооборудование, размещенное на движущихся частях станков и машин;

Металлические корпуса силовых стационарно установленных электроприемников, а также металлические трубы электропроводки к ним;

Корпуса и части электропроводок на лестничных клетках жилых и общественных зданий, в домовых, доковых и общественных санитарных узлах, банях и других подобных помещениях. В ванных комнатах металлические корпуса ванн должны быть соединены с трубами водопровода.

Допускается не выполнять специальное заземление или зануление:

Корпусов электрооборудования, установленного на заземленных или зануленных металлоконструкциях щитов или шкафов, станинах станков и других основаниях;

Металлических деталей на деревянных опорах воздушных линий (если заземление не требует по условиям защиты от атмосферных перенапряжений).

Рисунок 13. − Присоединение приемников к магистрали заземления

Существуют определенные требования к заземлению и занулению электроприемников различного типа.

1.Каждая заземленная часть электроустановки должны быть присоединена к заземляющей магистрали отдельным ответвлением рис. 13. Последовательное подключение к заземляющему проводнику нескольких частей запрещается.

2.Сечение медных и алюминиевых проводников для заземления различных частей электроустановки должны соответствовать значениям указанным в таблице 3.

.Заземляющие ответвления к однофазным электроприемникам должны выполняться отдельным проводником; использовать для этой цели нулевой рабочий провод запрещается.

.Присоединение заземляющих ответвлений к металлоконструкциям следует выполнять сваркой, а к корпусам аппаратов и машин - болтами. Контактные поверхности при этом должны быть зачищены до металлического блеска и смазаны тонким слоем вазелина.

.Металлические корпуса передвижных и переносных электроприемников заземляются специальной жилой гибкого провода, которая не должна одновреммено служить проводником рабочего тока. Использовать для этой цели нулевой рабочий провод электроустановки запрещается.

.Присоединение заземляющего проводника к заземляющему или нулевому контакту штепсельной розетки следует выполнять отдельным проводником. Вилка для включения переносного электроприемника должна иметь удлиненный заземляющий штырь, который вступает в соединение с заземляющим контактом розетки до того, как соединятся токопроводящие контакты.

.Жилы проводов и кабелей для заземления переносных и передвежных установок должны иметь сечения, равные сечениям фазных проводов, и находиться в общей с ними оболочке.

Таблица 3. − Минимальное допустимое сечение заземляющих

проводников, мм2

Тип проводникаМедныйАлюминиевыйНеизолированный проводник при открытой прокладке46Изолированный провод1,52,5Заземляющая и нулевая жила кабеля и многожильного провода в общей защитной оболочке с фазными жилами11,5

Заземлению не подлежат:

Рельсовые пути, выходящие за территорию электрических станций, подстанций промышленных предприятий;

Корпуса электрооборудования, установленного на заземленных металлических конструкциях, если на опорах поверхностях предусмотрены зачищенные и неокрашенные места для обеспечения плотного электрического контакта;

Корпуса электроизмерительных приборов, реле и других устройств, установленных на щитках, щитах, шкафах и стенах камер распределительных устройств;

Корпуса электроприемников, имеющих двойную изоляцию относительно токоведущих частей. У приборов с двойной изоляцией корпус выполняется из изолирующего материала, а токоведущие части имеют собственную изоляцию. Таким образом, если происходит повреждение изоляции токоведущей части приемника, то опасность поражения током не возникает, так как изоляционный корпус или изоляционные прокладки между корпусом и внутренними изолированными токоведущими частями надежно защищают человека от электрического удара;

Съемные или открывающиеся части металлических заземленных каркасов и камер распределительных устройств, ограждений, шкафов.

Запрещается заземлитель металлические корпуса стационарно установленного осветительного электрооборудования и переносные приемники в помещениях без повышенной опасности жилых и общественных зданий. В заземляющей сети наиболее часто повреждаются сварочные швы, соединяющие ее отдельные участки друг с другом. Целость сварочных швов проверяется ударами молотка по сварочным стыкам. Дефектный шов вырубают зубилом и вновь заваривают дуговой автогенной или термитной сваркой.

До начала ремонта заземляющей сети проверяют сопротивление заземлителя растеканию тока. Если оно выше нормы, то принимают меры к его снижению. Для этого увеличивают число электродов заземлителя или вокруг них укладывают в радиусе 250…300 мм поочередно слои соли и земли толщиной 10…15 мм. Каждый укладываемый слой поливают водой. Таким способом обрабатывают землю вокруг верхней части электрода заземлителя каждые 3-4 года.

5. Техника безопасности

5.1 Организация рабочего места электромонтера

Электромонтерам по обслуживанию электрооборудования приходится часто выполнять различные слесарные и сборочные операции. Поэтому они должны четко знать правила техники безопасности при проведении таких работ и уметь организовать их безопасное выполнение.

Перед началом работы следует проверить, в каком состоянии находится инструмент, которым она будет выполняться. Инструмент, имеющий дефекты, необходимо заменить исправным. Молоток должен быть плотно насажен на рукоятку, которая расклинивается клином из мягкой стали или дерева. Нельзя поправлять молоток с ослабленной рукояткой ударами его о верстах или другие предметы, это приводит к еще большому расшатыванию рукоятки. Также прочно должны быть насажены рукоятки на шаберы, напильники и другие инструменты. Слабо насаженные рукоятки во время работы легко соскакивают с инструмента, при этом острым хвостовиком инструмента можно сильно поранить руку. Ручным инструментом без рукоятки пользоваться запрещено. Гаечные ключи должны соответствовать размерам гаек и головок болтов; не разрешается применять ключи со смятыми и треснувшими губками, наращивать ключи трубами, другими ключами или иным способом, необходимо следить за исправностью тисков, съемников.

Правильная организация рабочего места обеспечивает рациональные движения работающего и сокращает до минимума затраты рабочего времени на отыскание и использование инструментов и материалов.

На рабочем месте цехового дежурного электромонтера должны находится: технологическая оснастка, организационная оснастка, должностная инструкция, электрические схемы главных электроустановок, схемы питания цеха или участка, эксплуатационный журнал, инструкция по технике безопасности, графики осмотров и сменно-часовой указатель-календарь местонахождения электромонтера. Рабочее место должно быть оформлено в соответствии с требованиями технической эстетики.

Рабочее место - это часть пространства, приспособленная для выполнения работником или групповой их своего производственного задания. Рабочее место, как правило, оснащено основным и вспомогательным оборудованием (станки, механизмы, энергетические установки и т.д.), технологической (инструмент, приспособления, контрольно-измерительные приборы) оснасткой. На социалистических производственных предприятиях ко всем рабочим местам предъявляют требования, выполнение которых обеспечивает повышение производительности труда и способствует сохранению здоровья и развитию личности работника.

Рабочее места, на которых трудятся рабочие электротехнических профессий, бывают различными в зависимости от того, какие действия и операции они выполняют монтажные, сборочные, регулировочные и т.п. Рабочее место электромонтера может быть и на открытом воздухе, например при сооружении или ремонте воздушных и кабельных электрических сетей, подстанций и т.д. Во всех случаях на рабочем месте должен быть образцовый порядок: инструменты приспособления (разрешается пользоваться только исправным инструментом) необходимо размещать на соответствующих местах, туда же нужно класть инструмент после окончания работы с ним, на рабочем месте не должно быть ничего лишнего, не требующегося для выполнения данной работы, оснащение и содержание рабочего места должно строго отвечать всем требованиям охраны труда, техники безопасности, производственной санитарии и гигиены и исключать возможность возникновения пожара.

Все указанные выше общие требования относятся и к рабочему мусту учащегося. Оно может представлять собой монтажный стол или верстак (при выполнении электромонтажных и изолировочных работ), намоточный станок (при выполнении намоточных работ), специальный верстак или стол (при выполнении слесарно-сборочных работ) и т.п. В зависимости от вида выполняемых электротехнических работ (монтаж, сборка, эксплуатация и д.р.) рабочее место должно быть оснащено соответствующими инструментами и приспособлениями. Обычно на рабочем месте размещают следующие инструменты:

крепежно-зажимные плоскогубцы, круглогубцы, пассатижи, тиски;

режущие − монтерский нож, кусачки, ножовку, ударные молоток, зубило, пробойник.

Кроме того, применяют общеслесарный инструмент, а также многие виды металлорежущего инструмента, так как выполнение электротехнических работ часто связано с рубкой металла, изгибание труб, резанием различных материалов, нарезанием резьбы и т.п.

Заводами выпускаются наборы инструментов для выполнения отдельных видов электротехнических работ. Каждый набор размещен в закрытой сумке из дерматина (ИН-3) или в раскладной сумке из искусственной кожи (НИЭ-3), масса комплекта 3,25 кг.

Так, в комплект инструментов для выполнения электромонтажных работ общего назначения входит следующее:

плоскогубцы 200 мм универсальные, плоскогубцы электромонтажные с эластичными чехлами;

острогубцы (кусачки) 150 мм с эластичными чехлами;

отвертка слесарно-монтажные разные (с пластмассовыми ручками) - 3 шт.;

молоток слесарный с ручкой массой 0,8 кг;

нож монтерский;

шило монтерское;

указатель напряжения;

линейка метровая складная металлическая;

очки защитные светлые;

гипсовка;

гладилка;

шнур крученный диаметром 1,5-2 мм длиной 15 м.

Находясь на рабочем месте, строго соблюдайте следующие правила:

  1. Будьте внимательны, дисциплинированны, осторожны, точно выполняйте устные и письменные указания учителя (мастера)
  2. Не оставляйте рабочее место без разрешения учителя (мастера).
  3. Располагайте на рабочем месте приборы, инструменты, материалы, оборудование в том порядке, который указан учителем (мастером) или в письменной инструкции.
  4. Не держите на рабочем месте предметы, не требующиеся при выполнении задания.

5.2 Требования безопасности перед началом работы

Перед началом работы электромонтер обязан:

а) предъявить руководителю удостоверение о проверке знаний безопасных методов работ, а также удостоверение о проверке знаний при работе в электроустановках напряжением до 1000 В или свыше 1000 В, получить задание и пройти инструктаж на рабочем месте по специфике выполняемой работы;

б) надеть спецодежду, спецобувь и каску установленного образца. После получения задания у руководителя работ и ознакомления, в случае необходимости, с мероприятиями наряда-допуска электромонтер обязан:

а) подготовить необходимые средства индивидуальной защиты, проверить их исправность;

б) проверить рабочее место и подходы к нему на соответствие требованиям безопасности;

в) подобрать инструмент, оборудование и технологическую оснастку, необходимые при выполнении работы, проверить их исправность и соответствие требованиям безопасности;

г) ознакомиться с изменениями в схеме электроснабжения потребителей и текущими записями в оперативном журнале.

Электромонтер не должен приступать к выполнению работ при следующих нарушениях требований безопасности:

а) неисправности технологической оснастки, приспособлений и инструмента, указанных в инструкциях заводов-изготовителей, при которых не допускается их применение;

б) несвоевременном проведении очередных испытаний основных и дополнительных средств защиты или истечении срока их эксплуатации, установленного заводом-изготовителем;

в) недостаточной освещенности или при загроможденности рабочего места;

г) отсутствии или истечении срока действия наряда-допуска при работе в действующих электроустановках.

Обнаруженные нарушения требований безопасности должны быть устранены собственными силами до начала работ, а при невозможности сделать это электромонтер обязан сообщить о них бригадиру или ответственному руководителю работ.


а) произнести необходимые отключения и принять меры, препятствующие подаче напряжения к месту работы вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры;

б) наложить заземление на токоведущие части;

в) оградить рабочее место инвентарными ограждениями и вывесить предупреждающие плакаты;

г) отключить при помощи коммутационных аппаратов или путем снятия предохранителей токоведущие части, на которых производится работа, или т.е., к которым прикасаются при выполнении работы, или оградить их во время работы изолирующими накладками (временными ограждениями);

д) принять дополнительные меры, препятствующие ошибочной подаче напряжения к месту работы при выполнении работы без применения переносных заземлений;

е) на пусковых устройствах, а также на основаниях предохранителей вывесить плакаты «Не включать - работают люди!»;

ж) на временных ограждениях вывесить плакаты или нанести предупредительные надписи «Стой - опасно для жизни!»;

з) проверку отсутствия напряжения производить в диэлектрических перчатках;

и) зажимы переносного заземления накладывать на заземляемые токоведущие части при помощи изолированной штанги с применением диэлектрических перчаток;

к) при производстве работ на токоведущих частях, находящихся под напряжением, пользоваться только сухими и чистыми изолирующими средствами, а также держать изолирующие средства за ручки-захваты не дальше ограничительного кольца.

Смену плавких вставок предохранителей при наличии рубильника следует производить при снятом напряжении. При невозможности снятия напряжения (на групповых щитках, сборках) смену плавких вставок предохранителей допускается производить под напряжением, но при отключенной нагрузке.

Смену плавких вставок предохранителей под напряжением электромонтер должен производить в защитных очках, диэлектрических перчатках, при помощи изолирующих клещей.

Перед пуском оборудования, временно отключенного по заявке не электротехнического персонала, следует осмотреть его, убедиться в готовности к приему напряжения и предупредить работающих на нем о предстоящем включении.

Присоединение и отсоединение переносных приборов, требующих разрыва электрических цепей, находящихся под напряжением, необходимо производить при полном снятии напряжения.

При выполнении работ на деревянных опорах воздушных линий электропередачи электромонтеру следует использовать когти и предохранительный пояс.

При выполнении работ во взрывоопасных помещениях электромонтеру не разрешается:

а) ремонтировать электрооборудование и сети, находящиеся под напряжением;

б) эксплуатировать электрооборудование при неисправном защитном заземлении:

в) включать автоматически отключающуюся электроустановку без выяснения и устранения причин ее отключения;

г) оставлять открытыми двери помещений и тамбуров, отделяющих взрывоопасные помещения от других;

д) заменять перегоревшие электрические лампочки во взрывозащищенных светильниках лампами других типов или большей мощности;

е) включать электроустановки без наличия аппаратов, отключающих электрическую цепь при ненормальных режимах работы;

ж) заменять защиту (тепловые элементы, предохранители, расцепители) электрооборудования защитой другого вида с другими номинальными параметрами, на которые данное оборудование не рассчитано.

При работе в электроустановках необходимо применять исправные электрозащитные средства: как основные (изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки), так и дополнительные (диэлектрические галоши, коврики, переносные заземляющие устройства, изолирующие подставки, оградительные подставки, оградительные устройства, плакаты и знаки безопасности).

Работы в условиях с повышенной опасностью следует осуществлять вдвоем в следующих случаях:

а) с полным или частичным снятием напряжения, выполняемого с наложением заземлений (отсоединение и присоединение линий к отдельным электродвигателям, переключения на силовых трансформаторах, работы внутри распределительных устройств);

б) без снятии напряжения, не требующего установки заземлений (электрические испытания, измерения, смена плавких вставок предохранителей и т.п.);

в) с приставных лестниц и подмостей, а также там, где эти операции по местным условиям затруднены;

г) на воздушных линиях электропередачи.

Измерение сопротивления изоляции мегомметром следует осуществлять только на полностью обесточенной электроустановке. Перед измерением следует убедиться в отсутствии напряжения на испытываемом оборудовании.

При работах вблизи действующих крановых или тельферных троллей электромонтеры обязаны выполнять следующие требования;

а) выключить троллеи и принять меры, устраняющие их случайное или ошибочное включение;

б) заземлить и закоротить троллеи между собой;

в) оградить изолирующими материалами (резиновыми ковриками, деревянными щитами) места возможного касания троллей в случае невозможности снятия напряжения. На ограждение повесить плакат «Опасно для жизни - напряжение 380 В!».

При обслуживании осветительных сетей электромонтеры обязаны выполнять следующие требования:

а) замену предохранителей и перегоревших ламп новыми, ремонт осветительной арматуры и электропроводки осуществлять при снятом напряжении в сети и в светлое время суток;

б) чистку арматуры и замену ламп, укрепленных на опорах, осуществлять после снятия напряжения и вдвоем с другим электромонтером;

в) установку и проверку электросчетчиков, включенных через измерительные трансформаторы, проводить вдвоем с электромонтером, имеющим квалификационную группу по технике безопасности не ниже IV;

г) при обслуживании светильников с автовышек или других перемещаемых средств подмащивания применять пояса предохранительные и диэлектрические перчатки.

При регулировке выключателей и разъединителей, соединенных с проводами, электромонтерам следует принять меры, предупреждающие возможность непредвиденного включения приводов посторонними лицами или их самопроизвольного включения.

Для проверки контактов масляных выключателей на одновременность включения, а также для освещения закрытых емкостей электромонтерам следует применять напряжение в электросети не выше 12 В.

В процессе работы электромонтеру запрещается:

а) переставлять временные ограждения, снимать плакаты, заземления и проходить на территорию огражденных участков;

б) применять указатель напряжений без повторной проверки после его падения;

в) снимать ограждения выводов обмоток во время работы электродвигателя;

г) пользоваться для заземления проводниками, не предназначенными для этой цели, а также присоединять заземление путем скрутки проводников;

д) применять токоизмерительные клещи с вынесенным амперметром, а также нагибаться к амперметру при отсчете показаний во время работы с токоизмерительными клещами;

е) прикасаться к приборам, сопротивлениям, проводам и измерительным трансформаторам во время измерений;

ж) производить измерения на воздушных линиях или троллеях, стоя на лестнице;

з) применять при обслуживании, а также ремонте электроустановок металлические лестницы;

и) пользоваться при работе под напряжением ножовками, напильниками, металлическими метрами и т.п.;

к) применять автотрансформаторы, дроссельные катушки и реостаты для получения понижающего напряжения;

л) пользоваться стационарными светильниками в качестве ручных - переносных ламп.

Для прохода на рабочее место электромонтеры должны использовать оборудование системы доступа (лестницы, трапы, мостики). При отсутствии ограждения рабочих мест на высоте электромонтеры обязаны применять предохранительные пояса с капроновым фалом. При этом электромонтеры должны выполнять требования «Типовой инструкции по охране труда для работников, выполняющих верхолазные работы».

5.4 Требования безопасности в аварийных ситуациях

При возникновении загорания в электроустановке или опасности поражения окружающих электрическим током в результате обрыва кабеля (провода) или замыкания необходимо обесточить установку, принять участие в тушении пожара и сообщить об этом бригадиру или руководителю работ. Пламя следует тушить углекислотными огнетушителями, асбестовыми покрывалами и песком.

5.5 Требования безопасности по окончании работы

а) передать сменщику информацию о состоянии обслуживаемого оборудования и электрических сетей и сделать запись в оперативном журнале;

б) убрать инструмент, приборы и средства индивидуальной защиты в отведенные для них места;

в) привести в порядок рабочее место;

г) убедиться в отсутствии очагов загорания;

д) о всех нарушениях требований безопасности и неисправностях сообщить бригадиру или ответственному руководителю работ.

Виды поражения организма человека электротоком:

Характерным случаем попадания под напряжение является соприкосновение с одним полюсом или фазой источника тока. Напряжение, действующее при этом на человека, называется напряжением прикосновения. Особенно опасны участки, расположенные на висках, спине, тыльных сторонах рук, голенях, затылке и шее.

Повышенную опасность представляют помещения с металлическими, земляными полами, сырые. Особенно опасные - помещения с парами кислот и щелочей в воздухе. Безопасными для жизни является напряжение не выше 42 В для сухих, отапливаемых с токонепроводящими полами помещений без повышенной опасности, не выше 36 В для помещений с повышенной опасностью (металлические, земляные, кирпичные полы, сырость, возможность касания заземленных элементов конструкций), не выше 12 В для особо опасных помещений, имеющих химически активную среду или два и более признаков помещений с повышенной опасностью.

В случае, когда человек оказывается вблизи упавшего на землю провода, находящегося под напряжением, возникает опасность поражения шаговым напряжением. Напряжение шага - это напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек. Такую цепь создает растекающийся по земле от провода ток. Оказавшись в зоне растекания тока, человек должен соединить ноги вместе и, не спеша, выходить из опасной зоны так, чтобы при передвижении ступня одной ноги не выходила полностью за ступню другой. При случайном падении можно коснуться земли руками, чем увеличить разность потенциалов и опасность поражения. Действие электрического тока на организм характеризуется основными поражающими факторами:

  1. электрический удар, возбуждающий мышцы тела, приводящий к судорогам, остановке дыхания и сердца;
  2. электрические ожоги, возникающие в результате выделения тепла при прохождении тока через тело человека; в зависимости от параметров электрической цепи и состояния человека может возникнуть покраснение кожи, ожог с образованием пузырей или обугливанием тканей; при расплавлении металла происходит металлизация кожи с проникновением в нее кусочков металла.

Список литературы

1.Нестеренко В.М., Мысьянов А.М. Технология электромонтажных работ: учеб. пособие для нач. проф. образования. − М.: Академия, 2002. - 592 с.

2.Сибикин Ю.Д., Сибикин М.Ю. Техническое обслуживание, ремонт электрооборудования и сетей промышленных предприятий: Учеб. для нач. проф. образования. - М.: ИРПО; Академия, 2000. - 432 с.

1.7.1. Настоящая глава Правил распространяется на все электроустановки переменного и постоянного тока напряжением до 1 кВ и выше и содержит общие требования к их заземлению и защите людей и животных от поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

Дополнительные требования приведены в соответствующих главах ПУЭ.

1.7.2. Электроустановки в отношении мер электробезопасности разделяются на:

электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью (см. 1.2.16);

электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;

электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;

электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

1.7.3. Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

система TN - система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

а б

Рис. 1.7.1. Система TN -C переменного (а ) и постоянного (б ) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:

1 - заземлитель нейтрали (средней точки) источника питания;
2 - открытые проводящие части;
3 - источник питания постоянного тока

система TN-С - система TN , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1.7.1);

система TN -S - система TN , в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 1.7.2);

система TN-C-S - система TN , в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 1.7.3);

система IT - система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 1.7.4);

система ТТ - система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис. 1.7.5).

Первая буква - состояние нейтрали источника питания относительно земли:

Т - заземленная нейтраль;
I - изолированная нейтраль.


Рис. 1.7.2. Система TN-S переменного (а ) и постоянного (б ) тока. Нулевой защитный и нулевой рабочий проводники разделены:

1 1-1 1-2 2 - открытые проводящие части; 3 - источник питания

Вторая-буква - состояние открытых проводящих частей относительно земли:

Т - открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N - открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N ) буквы - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S - нулевой рабочий (N ) и нулевой защитный (РЕ ) проводники разделены;


Рис. 1.7.3. Система TN-C-S переменного (а ) и постоянного (б ) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:

1 - заземлитель нейтрали источника переменного тока; 1-1 - заземлитель вывода источника постоянного тока; 1-2 - заземлитель средней точки источника постоянного тока; 2 - открытые проводящие части, 3 - источник питания

С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN -проводник);

N - - нулевой рабочий (нейтральный) проводник;

РЕ - - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN - - совмещенный нулевой защитный и нулевой рабочий проводники.


Рис. 1.7.4. Система IT переменного (а ) и постоянного (б ) тока. Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление:

1 - сопротивление заземления нейтрали источника питания (если имеется);
2 - заземлитель;
3 - открытые проводящие части;
4 - заземляющее устройство электроустановки;
5 - источник питания

1.7.4. Электрическая сеть с эффективно заземленной нейтралью - трехфазная электрическая сеть напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4.

Коэффициент замыкания на землю в трехфазной электрической сети - отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания.



Рис. 1.7.5. Система ТТ переменного (а ) и постоянного (б ) тока. Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали:

1 - заземлитель нейтрали источника переменного тока;
1-1 - заземлитель вывода источника постоянного тока;
1-2 - заземлитель средней точки источника постоянного тока;
2 - открытые проводящие части;
3 - заземлитель открытых проводящих частей электроустановки;
4 - источник питания

1.7.5. Глухозаземленная нейтраль - нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.

1.7.6. Изолированная нейтраль - нейтраль трансформатора или генератора, неприсоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

1.7.7. Проводящая часть - часть, которая может проводить электрический ток.

1.7.8. Токоведущая часть - проводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением, в том числе нулевой рабочий проводник (но не PEN -проводник).

1.7.9. Открытая проводящая часть - доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции.

1.7.10. Сторонняя проводящая часть - проводящая часть, не являющаяся частью электроустановки.

1.7.11. Прямое прикосновение - электрический контакт людей или животных с токоведущими частями, находящимися под напряжением.

1.7.12. Косвенное прикосновение - электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.

1.7.13. Защита от прямого прикосновения - защита для предотвращения прикосновения к токоведущим частям, находящимся под напряжением.

1.7.14. Защита при косвенном прикосновении - защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.

Термин повреждение изоляции следует понимать как единственное повреждение изоляции.

1.7.15. Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

1.7.16. Искусственный заземлитель - заземлитель, специально выполняемый для целей заземления.

1.7.17. Естественный заземлитель - сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

1.7.18. Заземляющий проводник - проводник, соединяющий заземляемую часть (точку) с заземлителем.

1.7.19. Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

1.7.20. Зона нулевого потенциала (относительная земля) - часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.

1.7.21. Зона растекания (локальная земля) - зона земли между заземлителем и зоной нулевого потенциала.

Термин земля, используемый в главе, следует понимать как земля в зоне растекания.

1.7.22. Замыкание на землю - случайный электрический контакт между токоведущими частями, находящимися под напряжением, и землей.

1.7.23. Напряжение на заземляющем устройстве - напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

1.7.24. Напряжение прикосновения - напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.

Ожидаемое напряжение прикосновения - напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается.

1.7.25. Напряжение шага - напряжение между двумя точками на поверхности земли, на расстоянии 1 м одна от другой, которое принимается равным длине шага человека.

1.7.26. Сопротивление заземляющего устройства - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

1.7.27. Эквивалентное удельное сопротивление земли с неоднородной структурой - удельное электрическое сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.

Термин удельное сопротивление, используемый в главе для земли с неоднородной структурой, следует понимать как эквивалентное удельное сопротивление.

1.7.28. Заземление - преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

1.7.29. Защитное заземление - заземление, выполняемое в целях электробезопасности.

1.7.30. Рабочее (функциональное) заземление - заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

1.7.31. Защитное зануление в электроустановках напряжением до 1 кВ - преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

1.7.32. Уравнивание потенциалов - электрическое соединение проводящих частей для достижения равенства их потенциалов.

Защитное уравнивание потенциалов - уравнивание потенциалов, выполняемое в целях электробезопасности.

Термин уравнивание потенциалов, используемый в главе, следует понимать как защитное уравнивание потенциалов.

1.7.33. Выравнивание потенциалов - снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.

1.7.34. Защитный (РЕ ) проводник - проводник, предназначенный для целей электробезопасности.

Защитный заземляющий проводник- защитный проводник, предназначенный для защитного заземления.

Защитный проводник уравнивания потенциалов - защитный проводник, предназначенный для защитного уравнивания потенциалов.

Нулевой защитный проводник - защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.

1.7.35. Нулевой рабочий (нейтральный) проводник (N ) - проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

1.7.36. Совмещенные нулевой защитный и нулевой рабочий (PEN ) проводники - проводники в электроустановках напряжением до 1 кВ, совмещающие функции нулевого защитного и нулевого рабочего проводников.

1.7.37. Главная заземляющая шина - шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов.

1.7.38. Защитное автоматическое отключение питания - автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Термин автоматическое отключение питания, используемый в главе, следует понимать как защитное автоматическое отключение питания.

1.7.39. Основная изоляция - изоляция токоведущих частей, обеспечивающая в том числе защиту от прямого прикосновения.

1.7.40. Дополнительная изоляция - независимая изоляция в электроустановках напряжением до 1 кВ, выполняемая дополнительно к основной изоляции для защиты при косвенном прикосновении.

1.7.41. Двойная изоляция - изоляция в электроустановках напряжением до 1 кВ, состоящая из основной и дополнительной изоляций.

1.7.42. Усиленная изоляция - изоляция в электроустановках напряжением до 1 кВ, обеспечивающая степень защиты от поражения электрическим током, равноценную двойной изоляции.

1.7.43. Сверхнизкое (малое) напряжение (СНН) - напряжение, не превышающее 50 В переменного и 120 В постоянного тока.

1.7.44. Разделительный трансформатор - трансформатор, первичная обмотка которого отделена от вторичных обмоток при помощи защитного электрического разделения цепей.

1.7.45. Безопасный разделительный трансформатор - разделительный трансформатор, предназначенный для питания цепей сверхнизким напряжением.

1.7.46. Защитный экран - проводящий экран, предназначенный для отделения электрической цепи и/или проводников от токоведущих частей других цепей.

1.7.47. Защитное электрическое разделение цепей - отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ с помощью:

  • двойной изоляции;
  • основной изоляции и защитного экрана;
  • усиленной изоляции.

1.7.48. Непроводящие (изолирующие) помещения, зоны, площадки - помещения, зоны, площадки, в которых (на которых) защита при косвенном прикосновении обеспечивается высоким сопротивлением пола и стен и в которых отсутствуют заземленные проводящие части.

Общие требования

1.7.49. Токоведущие части электроустановки не должны быть доступны для случайного прикосновения, а доступные прикосновению открытые и сторонние проводящие части не должны находиться под напряжением, представляющим опасность поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

1.7.50. Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

  • основная изоляция токоведущих частей;
  • ограждения и оболочки;
  • установка барьеров;
  • размещение вне зоны досягаемости;
  • применение сверхнизкого (малого) напряжения.

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ, при наличии требований других глав ПУЭ, следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.

1.7.51. Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

  • защитное заземление;
  • автоматическое отключение питания;
  • уравнивание потенциалов;
  • выравнивание потенциалов;
  • двойная или усиленная изоляция;
  • сверхнизкое (малое) напряжение;
  • защитное электрическое разделение цепей;
  • изолирующие (непроводящие) помещения, зоны, площадки.

1.7.52. Меры защиты от поражения электрическим током должны быть предусмотрены в электроустановке или ее части либо применены к отдельным электроприемникам и могут быть реализованы при изготовлении электрооборудования, либо в процессе монтажа электроустановки, либо в обоих случаях.

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока - во всех случаях.

Примечание. Здесь и далее в главе напряжение переменного тока означает среднеквадратичное значение напряжения переменного тока; напряжение постоянного тока - напряжение постоянного или выпрямленного тока с содержанием пульсаций не более 10 % от среднеквадратичного значения.

1.7.54. Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно. Использование естественных заземлителей в качестве элементов заземляющих устройств не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны.

1.7.55. Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство.

Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д. в течение всего периода эксплуатации.

В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.

Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.

При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.

1.7.56. Требуемые значения напряжений прикосновения и сопротивления заземляющих устройств при стекании с них токов замыкания на землю и токов утечки должны быть обеспечены при наиболее неблагоприятных условиях в любое время года.

При определении сопротивления заземляющих устройств должны быть учтены искусственные и естественные заземлители.

При определении удельного сопротивления земли в качестве расчетного следует принимать его сезонное значение, соответствующее наиболее неблагоприятным условиям.

Заземляющие устройства должны быть механически прочными, термически и динамически стойкими к токам замыкания на землю.

1.7.57. Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN .

Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78-1.7.79.

Требования к выбору систем TN-C , TN -S , TN -C -S для конкретных электроустановок приведены в соответствующих главах Правил.

1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.

1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

R а I а £ 50 В,

где I а - ток срабатывания защитного устройства;

R a - суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников - заземляющего проводника наиболее удаленного электроприемника.

1.7.60. При применении защитного автоматического отключения питания должна быть выполнена основная система уравнивания потенциалов в соответствии с 1.7.82, а при необходимости также дополнительная система уравнивания потенциалов в соответствии с 1.7.83.

1.7.61. При применении системы TN рекомендуется выполнять повторное заземление РЕ - и РEN -проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.

Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102-1.7.103.

1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78-1.7.79 для системы TN и 1.7.81 для системы IT , то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции (электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих (непроводящих) помещений, зон, площадок.

1.7.63. Система IT напряжением до 1 кВ, связанная через трансформатор с сетью напряжением выше 1 кВ, должна быть защищена пробивным предохранителем от опасности, возникающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низкого напряжения каждого трансформатора.

1.7.64. В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

В таких электроустановках должна быть предусмотрена возможность быстрого обнаружения замыканий на землю. Защита от замыканий на землю должна устанавливаться с действием на отключение по всей электрически связанной сети в тех случаях, в которых это необходимо по условиям безопасности (для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т.п.).

1.7.65. В электроустановках напряжением выше 1 кВ с эффективно заземленной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

1.7.66. Защитное зануление в системе TN и защитное заземление в системе IT электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.

Сопротивление заземляющего устройства опоры ВЛ, на которой установлено электрооборудование, должно соответствовать требованиям гл. 2.4 и 2.5.

Меры защиты от прямого прикосновения

1.7.67. Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током, за исключением случаев, специально оговоренных техническими условиями на конкретные изделия. При выполнении изоляции во время монтажа она должна быть испытана в соответствии с требованиями гл. 1.8.

В случаях, когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, в том числе в электроустановках напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.

1.7.68. Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.

Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.

Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2Х, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.

1.7.69. Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.

1.7.70. Размещение вне зоны досягаемости для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ может быть применено при невозможности выполнения мер, указанных в 1.7.68-1.7.69, или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.

В вертикальном направлении зона досягаемости в электроустановках напряжением до 1 кВ должна составлять 2,5 м от поверхности, на которой находятся люди (рис. 1.7.6).

Указанные размеры даны без учета применения вспомогательных средств (например, инструмента, лестниц, длинных предметов).

1.7.71. Установка барьеров и размещение вне зоны досягаемости допускается только в помещениях, доступных квалифицированному персоналу.

1.7.72. В электропомещениях электроустановок напряжением до 1 кВ не требуется защита от прямого прикосновения при одновременном выполнении следующих условий:

    эти помещения отчетливо обозначены, и доступ в них возможен только с помощью ключа;

    обеспечена возможность свободного выхода из помещения без ключа, даже если оно заперто на ключ снаружи;

    минимальные размеры проходов обслуживания соответствуют гл. 4.1.


Рис. 1.7.6. Зона досягаемости в электроустановках до 1 кВ:

S - поверхность, на которой может находиться человек;

В - основание поверхности S ;

Граница зоны досягаемости токоведущих частей рукой человека, находящегося на поверхности S ;

0,75; 1,25; 2,50 м - расстояния от края поверхности S до границы зоны досягаемости

Меры защиты от прямого и косвенного прикосновений

1.7.73. Сверхнизкое (малое) напряжение (СНН) в электроустановках напряжением до 1 кВ может быть применено для защиты от поражения электрическим током при прямом и/или косвенном прикосновениях в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания.

В качестве источника питания цепей СНН в обоих случаях следует применять безопасный разделительный трансформатор в соответствии с ГОСТ 30030 «Трансформаторы разделительные и безопасные разделительные трансформаторы» или другой источник СНН, обеспечивающий равноценную степень безопасности.

Токоведущие части цепей СНН должны быть электрически отделены от других цепей так, чтобы обеспечивалось электрическое разделение, равноценное разделению между первичной и вторичной обмотками разделительного трансформатора.

Проводники цепей СНН, как правило, должны быть проложены отдельно от проводников более высоких напряжений и защитных проводников, либо отделены от них заземленным металлическим экраном (оболочкой), либо заключены в неметаллическую оболочку дополнительно к основной изоляции.

Вилки и розетки штепсельных соединителей в цепях СНН не должны допускать подключение к розеткам и вилкам других напряжений.

Штепсельные розетки должны быть без защитного контакта.

При значениях СНН выше 25 В переменного или 60 В постоянного тока должна быть также выполнена защита от прямого прикосновения при помощи ограждений или оболочек или изоляции, соответствующей испытательному напряжению 500 В переменного тока в течение 1 мин.

1.7.74. При применении СНН в сочетании с электрическим разделением цепей открытые проводящие части не должны быть преднамеренно присоединены к заземлителю, защитным проводникам или открытым проводящим частям других цепей и к сторонним проводящим частям, кроме случая, когда соединение сторонних проводящих частей с электрооборудованием необходимо, а напряжение на этих частях не может превысить значение СНН.

СНН в сочетании с электрическим разделением цепей следует применять, когда при помощи СНН необходимо обеспечить защиту от поражения электрическим током при повреждении изоляции не только в цепи СНН, но и при повреждении изоляции в других цепях, например, в цепи, питающей источник.

При применении СНН в сочетании с автоматическим отключением питания один из выводов источника СНН и его корпус должны быть присоединены к защитному проводнику цепи, питающей источник.

1.7.75. В случаях, когда в электроустановке применено электрооборудование с наибольшим рабочим (функциональным) напряжением, не превышающим 50 В переменного или 120 В постоянного тока, такое напряжение может быть использовано в качестве меры защиты от прямого и косвенного прикосновения, если при этом соблюдены требования 1.7.73-1.7.74.

Меры защиты при косвенном прикосновении

1.7.76. Требования защиты при косвенном прикосновении распространяются на:

1) корпуса электрических машин, трансформаторов, аппаратов, светильников и т. п.;

2) приводы электрических аппаратов;

3) каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съемных или открывающихся частей, если на последних установлено электрооборудование напряжением выше 50 В переменного или 120 В постоянного тока (в случаях, предусмотренных соответствующими главами ПУЭ - выше 25 В переменного или 60 В постоянного тока);

4) металлические конструкции распределительных устройств, кабельные конструкции, кабельные муфты, оболочки и броню контрольных и силовых кабелей, оболочки проводов, рукава и трубы электропроводки, оболочки и опорные конструкции шинопроводов (токопроводов), лотки, короба, струны, тросы и полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с зануленной или заземленной металлической оболочкой или броней), а также другие металлические конструкции, на которых устанавливается электрооборудование;

5) металлические оболочки и броню контрольных и силовых кабелей и проводов на напряжения, не превышающие указанные в 1.7.53, проложенные на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т. п., с кабелями и проводами на более высокие напряжения;

6) металлические корпуса передвижных и переносных электроприемников;

7) электрооборудование, установленное на движущихся частях станков, машин и механизмов.

При применении в качестве защитной меры автоматического отключения питания указанные открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания в системе TN и заземлены в системах IT и ТТ .

1.7.77. Не требуется преднамеренно присоединять к нейтрали источника в системе TN и заземлять в системах IT и ТТ :

1) корпуса электрооборудования и аппаратов, установленных на металлических основаниях: конструкциях, распределительных устройствах, щитах, шкафах, станинах станков, машин и механизмов, присоединенных к нейтрали источника питания или заземленных, при обеспечении надежного электрического контакта этих корпусов с основаниями;

2) конструкции, перечисленные в 1.7.76, при обеспечении надежного электрического контакта между этими конструкциями и установленным на них электрооборудованием, присоединенным к защитному проводнику;

3) съемные или открывающиеся части металлических каркасов камер распределительных устройств, шкафов, ограждений и т. п., если на съемных (открывающихся) частях не установлено электрооборудование или если напряжение установленного электрооборудования не превышает значений, указанных в 1.7.53;

4) арматуру изоляторов воздушных линий электропередачи и присоединяемые к ней крепежные детали;

5) открытые проводящие части электрооборудования с двойной изоляцией;

6) металлические скобы, закрепы, отрезки труб механической защиты кабелей в местах их прохода через стены и перекрытия и другие подобные детали электропроводок площадью до 100 см 2 , в том числе протяжные и ответвительные коробки скрытых электропроводок.

1.7.78. При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания, если применена система TN , и заземлены, если применены системы IT или ТТ . При этом характеристики защитных аппаратов и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом в соответствии с номинальным фазным напряжением питающей сети.

В электроустановках, в которых в качестве защитной меры применено автоматическое отключение питания, должно быть выполнено уравнивание потенциалов.

Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток.

1.7.79. В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл. 1.7.1.

Таблица 1.7.1

TN

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.

В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Допускаются значения времени отключения более указанных в табл. 1.7.1, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов или щитков при выполнении одного из следующих условий:

1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:

50 × Z ц /U 0 ,

где Z ц - полное сопротивление цепи «фаза-нуль», Ом;

U 0 - номинальное фазное напряжение цепи, В;

50 - падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;

2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.

Допускается применение УЗО, реагирующих на дифференциальный ток.

1.7.80. Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN -C ). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN -C , защитный РЕ -проводник электроприемника должен быть подключен к PEN -проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.

1.7.81. В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 1.7.2.

Таблица 1.7.2

Наибольшее допустимое время защитного автоматического отключения для системы IT

1.7.82. Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части (рис. 1.7.7):

1) нулевой защитный РЕ - или РЕN -проводник питающей линии в системе TN ;

2) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и ТТ ;

3) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);

4) металлические трубы коммуникаций, входящих в здание: горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.

Если трубопровод газоснабжения имеет изолирующую вставку на вводе в здание, к основной системе уравнивания потенциалов присоединяется только та часть трубопровода, которая находится относительно изолирующей вставки со стороны здания;

5) металлические части каркаса здания;

6) металлические части централизованных систем вентиляции и кондиционирования. При наличии децентрализованных систем вентиляции и кондиционирования металлические воздуховоды следует присоединять к шине РЕ щитов питания вентиляторов и кондиционеров;

Рис. 1.7.7. Система уравнивания потенциалов в здании:

М - открытая проводящая часть; С1 - металлические трубы водопровода, входящие в здание; С2 - металлические трубы канализации, входящие в здание; С3 - металлические трубы газоснабжения с изолирующей вставкой на вводе, входящие в здание; С4 - воздуховоды вентиляции и кондиционирования; С5 - система отопления; С6 - металлические водопроводные трубы в ванной комнате; С7 - металлическая ванна; С8 - сторонняя проводящая часть в пределах досягаемости от открытых проводящих частей; С9 - арматура железобетонных конструкций; ГЗШ - главная заземляющая шина; Т1 - естественный заземлитель; Т2 - заземлитель молниезащиты (если имеется); 1 - нулевой защитный проводник; 2 - проводник основной системы уравнивания потенциалов; 3 - проводник дополнительной системы уравнивания потенциалов; 4 - токоотвод системы молниезащиты; 5 - контур (магистраль) рабочего заземления в помещении информационного вычислительного оборудования; 6 - проводник рабочего (функционального) заземления; 7 - проводник уравнивания потенциалов в системе рабочего (функционального) заземления; 8 - заземляющий проводник

7) заземляющее устройство системы молниезащиты 2-й и 3-й категорий;

8) заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9) металлические оболочки телекоммуникационных кабелей.

Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине (1.7.119-1.7.120) при помощи проводников системы уравнивания потенциалов.

1.7.83. Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ , включая защитные проводники штепсельных розеток.

Для уравнивания потенциалов могут быть использованы специально предусмотренные проводники либо открытые и сторонние проводящие части, если они удовлетворяют требованиям 1.7.122 к защитным проводникам в отношении проводимости и непрерывности электрической цепи.

1.7.84. Защита при помощи двойной или усиленной изоляции может быть обеспечена применением электрооборудования класса II или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку.

Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

1.7.85. Защитное электрическое разделение цепей следует применять, как правило, для одной цепи.

Наибольшее рабочее напряжение отделяемой цепи не должно превышать 500 В.

Питание отделяемой цепи должно быть выполнено от разделительного трансформатора, соответствующего ГОСТ 30030 «Трансформаторы разделительные и безопасные разделительные трансформаторы», или от другого источника, обеспечивающего равноценную степень безопасности.

Токоведущие части цепи, питающейся от разделительного трансформатора, не должны иметь соединений с заземленными частями и защитными проводниками других цепей.

Проводники цепей, питающихся от разделительного трансформатора, рекомендуется прокладывать отдельно от других цепей. Если это невозможно, то для таких цепей необходимо использовать кабели без металлической оболочки, брони, экрана или изолированные провода, проложенные в изоляционных трубах, коробах и каналах при условии, что номинальное напряжение этих кабелей и проводов соответствует наибольшему напряжению совместно проложенных цепей, а каждая цепь защищена от сверхтоков.

Если от разделительного трансформатора питается только один электроприемник, то его открытые проводящие части не должны быть присоединены ни к защитному проводнику, ни к открытым проводящим частям других цепей.

Допускается питание нескольких электроприемников от одного разделительного трансформатора при одновременном выполнении следующих условий:

1) открытые проводящие части отделяемой цепи не должны иметь электрической связи с металлическим корпусом источника питания;

2) открытые проводящие части отделяемой цепи должны быть соединены между собой изолированными незаземленными проводниками местной системы уравнивания потенциалов, не имеющей соединений с защитными проводниками и открытыми проводящими частями других цепей;

3) все штепсельные розетки должны иметь защитный контакт, присоединенный к местной незаземленной системе уравнивания потенциалов;

4) все гибкие кабели, за исключением питающих оборудование класса II, должны иметь защитный проводник, применяемый в качестве проводника уравнивания потенциалов;

5) время отключения устройством защиты при двухфазном замыкании на открытые проводящие части не должно превышать время, указанное в табл. 1.7.2.

1.7.86. Изолирующие (непроводящие) помещения, зоны и площадки могут быть применены в электроустановках напряжением до 1 кВ, когда требования к автоматическому отключению питания не могут быть выполнены, а применение других защитных мер невозможно либо нецелесообразно.

Сопротивление относительно локальной земли изолирующего пола и стен таких помещений, зон и площадок в любой точке должно быть не менее:

50 кОм при номинальном напряжении электроустановки до 500 В включительно, измеренное мегаомметром на напряжение 500 В;

100 кОм при номинальном напряжении электроустановки более 500 В, измеренное мегаомметром на напряжение 1000 В.

Если сопротивление в какой-либо точке меньше указанных, такие помещения, зоны, площадки не должны рассматриваться в качестве меры защиты от поражения электрическим током.

Для изолирующих (непроводящих) помещений, зон, площадок допускается использование электрооборудования класса 0 при соблюдении, по крайней мере, одного из трех следующих условий:

1) открытые проводящие части удалены одна от другой и от сторонних проводящих частей не менее чем на 2 м. Допускается уменьшение этого расстояния вне зоны досягаемости до 1,25 м;

2) открытые проводящие части отделены от сторонних проводящих частей барьерами из изоляционного материала. При этом расстояния, не менее указанных в пп. 1, должны быть обеспечены с одной стороны барьера;

3) сторонние проводящие части покрыты изоляцией, выдерживающей испытательное напряжение не менее 2 кВ в течение 1 мин.

В изолирующих помещениях (зонах) не должен предусматриваться защитный проводник.

Должны быть предусмотрены меры против заноса потенциала на сторонние проводящие части помещения извне.

Пол и стены таких помещений не должны подвергаться воздействию влаги.

1.7.87. При выполнении мер защиты в электроустановках напряжением до 1 кВ классы применяемого электрооборудования по способу защиты человека от поражения электрическим током по ГОСТ 12.2.007.0 «ССБТ. Изделия электротехнические. Общие требования безопасности» следует принимать в соответствии с табл. 1.7.3.

Таблица 1.7.3

Применение электрооборудования в электроустановках напряжением до 1 кВ

Класс по ГОСТ 12.2.007.0 Р МЭК536

Маркировка

Назначение защиты

Условия применения электрооборудования в электроустановке

При косвенном прикосновении

1. Применение в непроводящих помещениях.
2. Питание от вторичной обмотки разделительного трансформатора только одного электроприемника

Защитный зажим -знак или буквы РЕ , или желто-зеленые полосы

При косвенном прикосновении

Присоединение заземляющего зажима электрооборудования к защитному проводнику электроустановки

При косвенном прикосновении

Независимо от мер защиты, принятых в электроустановке

От прямого и косвенного прикосновений

Питание от безопасного разделительного трансформатора

Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью

1.7.88. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью следует выполнять с соблюдением требований либо к их сопротивлению (1.7.90), либо к напряжению прикосновения (1.7.91), а также с соблюдением требований к конструктивному выполнению (1.7.92-1.7.93) и к ограничению напряжения на заземляющем устройстве (1.7.89). Требования 1.7.89-1.7.93 не распространяются на заземляющие устройства опор ВЛ.

1.7.89. Напряжение на заземляющем устройстве при стекании с него тока замыкания на землю не должно, как правило, превышать 10 кВ. Напряжение выше 10 кВ допускается на заземляющих устройствах, с которых исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановок. При напряжении на заземляющем устройстве более 5 кВ должны быть предусмотрены меры по защите изоляции отходящих кабелей связи и телемеханики и по предотвращению выноса опасных потенциалов за пределы электроустановки.

1.7.90. Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей.

В целях выравнивания электрического потенциала и обеспечения присоединения электрооборудования к заземлителю на территории, занятой оборудованием, следует прокладывать продольные и поперечные горизонтальные заземлители и объединять их между собой в заземляющую сетку.

Продольные заземлители должны быть проложены вдоль осей электрооборудования со стороны обслуживания на глубине 0,5-0,7 м от поверхности земли и на расстоянии 0,8-1,0 м от фундаментов или оснований оборудования. Допускается увеличение расстояний от фундаментов или оснований оборудования до 1,5 м с прокладкой одного заземлителя для двух рядов оборудования, если стороны обслуживания обращены друг к другу, а расстояние между основаниями или фундаментами двух рядов не превышает 3,0 м.

Поперечные заземлители следует прокладывать в удобных местах между оборудованием на глубине 0,5-0,7 м от поверхности земли. Расстояние между ними рекомендуется принимать увеличивающимся от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5; 16,0; 20,0 м. Размеры ячеек заземляющей сетки, примыкающих к местам присоединения нейтралей силовых трансформаторов и короткозамыкателей к заземляющему устройству, не должны превышать 6 х 6 м.

Горизонтальные заземлители следует прокладывать по краю территории, занимаемой заземляющим устройством так, чтобы они в совокупности образовывали замкнутый контур.

Если контур заземляющего устройства располагается в пределах внешнего ограждения электроустановки, то у входов и въездов на ее территорию следует выравнивать потенциал путем установки двух вертикальных заземлителей, присоединенных к внешнему горизонтальному заземлителю напротив входов и въездов. Вертикальные заземлители должны быть длиной 3-5 м, а расстояние между ними должно быть равно ширине входа или въезда.

1.7.91. Заземляющее устройство, которое выполняется с соблюдением требований, предъявляемых к напряжению прикосновения, должно обеспечивать в любое время года при стекании с него тока замыкания на землю значения напряжений прикосновения, не превышающие нормированных (см. ГОСТ 12.1.038). Сопротивление заземляющего устройства при этом определяется по допустимому напряжению на заземляющем устройстве и току замыкания на землю.

При определении значения допустимого напряжения прикосновения в качестве расчетного времени воздействия следует принимать сумму времени действия защиты и полного времени отключения выключателя. При определении допустимых значений напряжений прикосновения у рабочих мест, где при производстве оперативных переключений могут возникнуть КЗ на конструкции, доступные для прикосновения производящему переключения персоналу, следует принимать время действия резервной защиты, а для остальной территории - основной защиты.

Примечание. Рабочее место следует понимать как место оперативного обслуживания электрических аппаратов.

Размещение продольных и поперечных горизонтальных заземлителей должно определяться требованиями ограничения напряжений прикосновения до нормированных значений и удобством присоединения заземляемого оборудования. Расстояние между продольными и поперечными горизонтальными искусственными заземлителями не должно превышать 30 м, а глубина их заложения в грунт должна быть не менее 0,3 м. Для снижения напряжения прикосновения у рабочих мест в необходимых случаях может быть выполнена подсыпка щебня слоем толщиной 0,1-0,2 м.

В случае объединения заземляющих устройств разных напряжений в одно общее заземляющее устройство напряжение прикосновения должно определяться по наибольшему току короткого замыкания на землю объединяемых ОРУ.

1.7.92. При выполнении заземляющего устройства с соблюдением требований, предъявляемых к его сопротивлению или к напряжению прикосновения, дополнительно к требованиям 1.7.90-1.7.91 следует:

прокладывать заземляющие проводники, присоединяющие оборудование или конструкции к заземлителю, в земле на глубине не менее 0,3 м;

прокладывать продольные и поперечные горизонтальные заземлители (в четырех направлениях) вблизи мест расположения заземляемых нейтралей силовых трансформаторов, короткозамыкателей.

При выходе заземляющего устройства за пределы ограждения электроустановки горизонтальные заземлители, находящиеся вне территории электроустановки, следует прокладывать на глубине не менее 1 м. Внешний контур заземляющего устройства в этом случае рекомендуется выполнять в виде многоугольника с тупыми или скругленными углами.

1.7.93. Внешнюю ограду электроустановок не рекомендуется присоединять к заземляющему устройству.

Если от электроустановки отходят ВЛ 110 кВ и выше, то ограду следует заземлить с помощью вертикальных заземлителей длиной 2-3 м, установленных у стоек ограды по всему ее периметру через 20-50 м. Установка таких заземлителей не требуется для ограды с металлическими стойками и с теми стойками из железобетона, арматура которых электрически соединена с металлическими звеньями ограды.

Для исключения электрической связи внешней ограды с заземляющим устройством расстояние от ограды до элементов заземляющего устройства, расположенных вдоль нее с внутренней, внешней или с обеих сторон, должно быть не менее 2 м. Выходящие за пределы ограды горизонтальные заземлители, трубы и кабели с металлической оболочкой или броней и другие металлические коммуникации должны быть проложены посередине между стойками ограды на глубине не менее 0,5 м. В местах примыкания внешней ограды к зданиям и сооружениям, а также в местах примыкания к внешней ограде внутренних металлических ограждений должны быть выполнены кирпичные или деревянные вставки длиной не менее 1 м.

Питание электроприемников, установленных на внешней ограде, следует осуществлять от разделительных трансформаторов. Эти трансформаторы не допускается устанавливать на ограде. Линия, соединяющая вторичную обмотку разделительного трансформатора с электроприемником, расположенным на ограде, должна быть изолирована от земли на расчетное значение напряжения на заземляющем устройстве.

Если выполнение хотя бы одного из указанных мероприятий невозможно, то металлические части ограды следует присоединить к заземляющему устройству и выполнить выравнивание потенциалов так, чтобы напряжение прикосновения с внешней и внутренней сторон ограды не превышало допустимых значений. При выполнении заземляющего устройства по допустимому сопротивлению с этой целью должен быть проложен горизонтальный заземлитель с внешней стороны ограды на расстоянии 1 м от нее и на глубине 1 м. Этот заземлитель следует присоединять к заземляющему устройству не менее чем в четырех точках.

1.7.94. Если заземляющее устройство электроустановки напряжением выше 1 кВ сети с эффективно заземленной нейтралью соединено с заземляющим устройством другой электроустановки при помощи кабеля с металлической оболочкой или броней или других металлических связей, то для выравнивания потенциалов вокруг указанной другой электроустановки или здания, в котором она размещена, необходимо соблюдение одного из следующих условий:

1) прокладка в земле на глубине 1 м и на расстоянии 1 м от фундамента здания или от периметра территории, занимаемой оборудованием, заземлителя, соединенного с системой уравнивания потенциалов этого здания или этой территории, а у входов и у въездов в здание - укладка проводников на расстоянии 1 и 2 м от заземлителя на глубине 1 и 1,5 м соответственно и соединение этих проводников с заземлителем;

2) использование железобетонных фундаментов в качестве заземлителей в соответствии с 1.7.109, если при этом обеспечивается допустимый уровень выравнивания потенциалов. Обеспечение условий выравнивания потенциалов посредством железобетонных фундаментов, используемых в качестве заземлителей, определяется в соответствии с ГОСТ 12.1.030 «Электробезопасность. Защитное заземление, зануление».

Не требуется выполнение условий, указанных в пп. 1 и 2, если вокруг зданий имеются асфальтовые отмостки, в том числе у входов и у въездов. Если у какого-либо входа (въезда) отмостка отсутствует, у этого входа (въезда) должно быть выполнено выравнивание потенциалов путем укладки двух проводников, как указано в пп. 1, или соблюдено условие по пп. 2. При этом во всех случаях должны выполняться требования 1.7.95.

1.7.95. Во избежание выноса потенциала не допускается питание электроприемников, находящихся за пределами заземляющих устройств электроустановок напряжением выше 1 кВ сети с эффективно заземленной нейтралью, от обмоток до 1 кВ с заземленной нейтралью трансформаторов, находящихся в пределах контура заземляющего устройства электроустановки напряжением выше 1 кВ.

При необходимости питание таких электроприемников может осуществляться от трансформатора с изолированной нейтралью на стороне напряжением до 1 кВ по кабельной линии, выполненной кабелем без металлической оболочки и без брони, или по ВЛ.

При этом напряжение на заземляющем устройстве не должно превышать напряжение срабатывания пробивного предохранителя, установленного на стороне низшего напряжения трансформатора с изолированной нейтралью.

Питание таких электроприемников может также осуществляться от разделительного трансформатора. Разделительный трансформатор и линия от его вторичной обмотки к электроприемнику, если она проходит по территории, занимаемой заземляющим устройством электроустановки напряжением выше 1 кВ, должны иметь изоляцию от земли на расчетное значение напряжения на заземляющем устройстве.

Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью

1.7.96. В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть

R £ 250/I ,

но не более 10 Ом, где I - расчетный ток замыкания на землю, А.

В качестве расчетного тока принимается:

1) в сетях без компенсации емкостных токов - ток замыкания на землю;

2) в сетях с компенсацией емкостных токов:

для заземляющих устройств, к которым присоединены компенсирующие аппараты, - ток, равный 125 % номинального тока наиболее мощного из этих аппаратов;

для заземляющих устройств, к которым не присоединены компенсирующие аппараты, - ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.

Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольшее значение.

1.7.97. При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с изолированной нейтралью должны быть выполнены условия 1.7.104.

При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства должно быть не более указанного в 1.7.101 либо к заземляющему устройству должны быть присоединены оболочки и броня не менее двух кабелей на напряжение до или выше 1 кВ или обоих напряжений, при общей протяженности этих кабелей не менее 1 км.

1.7.98. Для подстанций напряжением 6-10/0,4 кВ должно быть выполнено одно общее заземляющее устройство, к которому должны быть присоединены:

1) нейтраль трансформатора на стороне напряжением до 1 кВ;

2) корпус трансформатора;

3) металлические оболочки и броня кабелей напряжением до 1 кВ и выше;

4) открытые проводящие части электроустановок напряжением до 1 кВ и выше;

5) сторонние проводящие части.

Вокруг площади, занимаемой подстанцией, на глубине не менее 0,5 м и на расстоянии не более 1 м от края фундамента здания подстанции или от края фундаментов открыто установленного оборудования должен быть проложен замкнутый горизонтальный заземлитель (контур), присоединенный к заземляющему устройству.

1.7.99. Заземляющее устройство сети напряжением выше 1 кВ с изолированной нейтралью, объединенное с заземляющим устройством сети напряжением выше 1 кВ с эффективно заземленной нейтралью в одно общее заземляющее устройство, должно удовлетворять также требованиям 1.7.89-1.7.90.

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью

1.7.100. В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.

Искусственный заземлитель, предназначенный для заземления нейтрали, как правило, должен быть расположен вблизи генератора или трансформатора. Для внутрицеховых подстанций допускается располагать заземлитель около стены здания.

Если фундамент здания, в котором размещается подстанция, используется в качестве естественных заземлителей, нейтраль трансформатора следует заземлять путем присоединения не менее чем к двум металлическим колоннам или к закладным деталям, приваренным к арматуре не менее двух железобетонных фундаментов.

При расположении встроенных подстанций на разных этажах многоэтажного здания заземление нейтрали трансформаторов таких подстанций должно быть выполнено при помощи специально проложенного заземляющего проводника. В этом случае заземляющий проводник должен быть дополнительно присоединен к колонне здания, ближайшей к трансформатору, а его сопротивление учтено при определении сопротивления растеканию заземляющего устройства, к которому присоединена нейтраль трансформатора.

Во всех случаях должны быть приняты меры по обеспечению непрерывности цепи заземления и защите заземляющего проводника от механических повреждений.

Если в PEN -проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN распределительного устройства напряжением до 1 кВ, установлен трансформатор тока, то заземляющий проводник должен быть присоединен не к нейтрали трансформатора или генератора непосредственно, а к PEN -проводнику, по возможности сразу за трансформатором тока. В таком случае разделение PEN -проводника на РЕ - и N -проводники в системе TN-S должно быть выполнено также за трансформатором тока. Трансформатор тока следует размещать как можно ближе к выводу нейтрали генератора или трансформатора.

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN - или PE -проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли r >

1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN -проводника. При этом в первую очередь следует использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых перенапряжений (см. гл. 2.4).

Указанные повторные заземления выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются.

Повторные заземления PEN -проводника в сетях постоянного тока должны быть выполнены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Заземляющие проводники для повторных заземлений PEN -проводника должны иметь размеры не менее приведенных в табл. 1.7.4.

Таблица 1.7.4

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм

Толщина стенки, мм

Прямоугольный

оцинкованная

для вертикальных заземлителей;

для горизонтальных заземлителей

Прямоугольный

Прямоугольный

Канат многопроволочный

* Диаметр каждой проволоки.

1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN -проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли r > 100 Ом×м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью

1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей, в системе IT должно соответствовать условию:

R £ U пр /I ,

где R - сопротивление заземляющего устройства, Ом;

U пр - напряжение прикосновения, значение которого принимается равным 50 В (см. также 1.7.53);

I - полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВ×А, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

Заземляющие устройства в районах с большим удельным сопротивлением земли

1.7.105. Заземляющие устройства электроустановок напряжением выше 1 кВ с эффективно заземленной нейтралью в районах с большим удельным сопротивлением земли, в том числе в районах многолетней мерзлоты, рекомендуется выполнять с соблюдением требований, предъявляемых к напряжению прикосновения (1.7.91).

В скальных структурах допускается прокладывать горизонтальные заземлители на меньшей глубине, чем этого требуют 1.7.91-1.7.93, но не менее чем 0,15 м. Кроме того, допускается не выполнять требуемые 1.7.90 вертикальные заземлители у входов и у въездов.

1.7.106. При сооружении искусственных заземлителей в районах с большим удельным сопротивлением земли рекомендуются следующие мероприятия:

1) устройство вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление земли снижается, а естественные углубленные заземлители (например, скважины с металлическими обсадными трубами) отсутствуют;

2) устройство выносных заземлителей, если вблизи (до 2 км) от электроустановки есть места с меньшим удельным сопротивлением земли;

3) укладка в траншеи вокруг горизонтальных заземлителей в скальных структурах влажного глинистого грунта с последующей трамбовкой и засыпкой щебнем до верха траншеи;

4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта.

1.7.107. В районах многолетней мерзлоты, кроме рекомендаций, приведенных в 1.7.106, следует:

1) помещать заземлители в непромерзающие водоемы и талые зоны;

2) использовать обсадные трубы скважин;

3) в дополнение к углубленным заземлителям применять протяженные заземлители на глубине около 0,5 м, предназначенные для работы в летнее время при оттаивании поверхностного слоя земли;

4) создавать искусственные талые зоны.

1.7.108. В электроустановках напряжением выше 1 кВ, а также до 1 кВ с изолированной нейтралью для земли с удельным сопротивлением более 500 Ом×м, если мероприятия, предусмотренные 1.7.105-1.7.107, не позволяют получить приемлемые по экономическим соображениям заземлители, допускается повысить требуемые настоящей главой значения сопротивлений заземляющих устройств в 0,002r раз, где r - эквивалентное удельное сопротивление земли, Ом×м. При этом увеличение требуемых настоящей главой сопротивлений заземляющих устройств должно быть не более десятикратного.

Заземлители

1.7.109. В качестве естественных заземлителей могут быть использованы:

1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;

2) металлические трубы водопровода, проложенные в земле;

3) обсадные трубы буровых скважин;

4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т. п.;

5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;

6) другие находящиеся в земле металлические конструкции и сооружения;

7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.

1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82.

Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ.

Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.

1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными.

Искусственные заземлители не должны иметь окраски.

Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл. 1.7.4.

1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя).

В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий:

увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы;

применить заземлители и заземляющие проводники с гальваническим покрытием или медные.

При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией.

Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.

Заземляющие проводники

1.7.113. Сечения заземляющих проводников в электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам.

Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4.

Прокладка в земле алюминиевых неизолированных проводников не допускается.

1.7.114. В электроустановках напряжением выше 1 кВ сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока однофазного КЗ в электроустановках с эффективно заземленной нейтралью или тока двухфазного КЗ в электроустановках с изолированной нейтралью температура заземляющих проводников не превысила 400 °С (кратковременный нагрев, соответствующий полному времени действия защиты и отключения выключателя).

1.7.115. В электроустановках напряжением выше 1 кВ с изолированной нейтралью проводимость заземляющих проводников сечением до 25 мм 2 по меди или равноценное ему из других материалов должна составлять не менее 1/3 проводимости фазных проводников. Как правило, не требуется применение медных проводников сечением более 25 мм 2 , алюминиевых - 35 мм 2 , стальных - 120 мм 2 .

1.7.116. Для выполнения измерений сопротивления заземляющего устройства в удобном месте должна быть предусмотрена возможность отсоединения заземляющего проводника. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего проводника должно быть возможно только при помощи инструмента.

1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный - 10 мм 2 , алюминиевый - 16 мм 2 , стальной - 75 мм 2 .

1.7.118. У мест ввода заземляющих проводников в здания должен быть предусмотрен опознавательный знак .

Главная заземляющая шина

1.7.119. Главная заземляющая шина может быть выполнена внутри вводного устройства электроустановки напряжением до 1 кВ или отдельно от него.

Внутри вводного устройства в качестве главной заземляющей шины следует использовать шину РЕ .

При отдельной установке главная заземляющая шина должна быть расположена в доступном, удобном для обслуживания месте вблизи вводного устройства.

Сечение отдельно установленной главной заземляющей шины должно быть не менее сечения РЕ (pen )-проводника питающей линии.

Главная заземляющая шина должна быть, как правило, медной. Допускается применение главной заземляющей шины из стали. Применение алюминиевых шин не допускается.

В конструкции шины должна быть предусмотрена возможность индивидуального отсоединения присоединенных к ней проводников. Отсоединение должно быть возможно только с использованием инструмента.

В местах, доступных только квалифицированному персоналу (например, щитовых помещениях жилых домов), главную заземляющую шину следует устанавливать открыто. В местах, доступных посторонним лицам (например, подъездах или подвалах домов), она должна иметь защитную оболочку - шкаф или ящик с запирающейся на ключ дверцей. На дверце или на стене над шиной должен быть нанесен знак .

1.7.120. Если здание имеет несколько обособленных вводов, главная заземляющая шина должна быть выполнена для каждого вводного устройства. При наличии встроенных трансформаторных подстанций главная заземляющая шина должна устанавливаться возле каждой из них. Эти шины должны соединяться проводником уравнивания потенциалов, сечение которого должно быть не менее половины сечения РЕ (pen )-проводника той линии среди отходящих от щитов низкого напряжения подстанций, которая имеет наибольшее сечение. Для соединения нескольких главных заземляющих шин могут использоваться сторонние проводящие части, если они соответствуют требованиям 1.7.122 к непрерывности и проводимости электрической цепи.

Защитные проводники (pe -проводники)

1.7.121. В качестве РЕ -проводников в электроустановках напряжением до 1 кВ могут использоваться:

1) специально предусмотренные проводники:

    жилы многожильных кабелей;

    изолированные или неизолированные провода в общей оболочке с фазными проводами;

    стационарно проложенные изолированные или неизолированные проводники;

2) открытые проводящие части электроустановок:

    алюминиевые оболочки кабелей;

    стальные трубы электропроводок;

    металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления.

Металлические короба и лотки электропроводок можно использовать в качестве защитных проводников при условии, что конструкцией коробов и лотков предусмотрено такое использование, о чем имеется указание в документации изготовителя, а их расположение исключает возможность механического повреждения;

3) некоторые сторонние проводящие части:

    металлические строительные конструкции зданий и сооружений (фермы, колонны и т. п.);

    арматура железобетонных строительных конструкций зданий при условии выполнения требований 1.7.122;

    металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).

1.7.122. Использование открытых и сторонних проводящих частей в качестве pe -проводников допускается, если они отвечают требованиям настоящей главы к проводимости и непрерывности электрической цепи.

Сторонние проводящие части могут быть использованы в качестве РЕ -проводников, если они, кроме того, одновременно отвечают следующим требованиям:

1) непрерывность электрической цепи обеспечивается либо их конструкцией, либо соответствующими соединениями, защищенными от механических, химических и других повреждений;

2) их демонтаж невозможен, если не предусмотрены меры по сохранению непрерывности цепи и ее проводимости.

1.7.123. Не допускается использовать в качестве РЕ -проводников:

металлические оболочки изоляционных трубок и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а также свинцовые оболочки проводов и кабелей;

трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления;

водопроводные трубы при наличии в них изолирующих вставок.

1.7.124. Нулевые защитные проводники цепей не допускается использовать в качестве нулевых защитных проводников электрооборудования, питающегося по другим цепям, а также использовать открытые проводящие части электрооборудования в качестве нулевых защитных проводников для другого электрооборудования, за исключением оболочек и опорных конструкций шинопроводов и комплектных устройств заводского изготовления, обеспечивающих возможность подключения к ним защитных проводников в нужном месте.

1.7.125. Использование специально предусмотренных защитных проводников для иных целей не допускается.

1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.7.5.

Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Таблица 1.7.5

Наименьшие сечения защитных проводников

Допускается, при необходимости, принимать сечение защитного проводника менее требуемых, если оно рассчитано по формуле (только для времени отключения £ 5 с):

S ³ I /k ,

где S - площадь поперечного сечения защитного проводника, мм 2 ;

I - ток короткого замыкания, обеспечивающий время отключения поврежденной цепи защитным аппаратом в соответствии с табл. 1.7.1 и 1.7.2 или за время не более 5 с в соответствии с 1.7.79, А;

t - время срабатывания защитного аппарата, с;

k - коэффициент, значение которого зависит от материала защитного проводника, его изоляции, начальной и конечной температур. Значение k для защитных проводников в различных условиях приведены в табл. 1.7.6-1.7.9.

Если при расчете получается сечение, отличное от приведенного в табл. 1.7.5, то следует выбирать ближайшее большее значение, а при получении нестандартного сечения - применять проводники ближайшего большего стандартного сечения.

Значения максимальной температуры при определении сечения защитного проводника не должны превышать предельно допустимых температур нагрева проводников при КЗ в соответствии с гл. 1.4, а для электроустановок во взрывоопасных зонах должны соответствовать ГОСТ 22782.0 «Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний».

1.7.127. Во всех случаях сечение медных защитных проводников, не входящих в состав кабеля или проложенных не в общей оболочке (трубе, коробе, на одном лотке) с фазными проводниками, должно быть не менее:

  • 2,5 мм 2 - при наличии механической защиты;
  • 4 мм 2 - при отсутствии механической защиты.

Сечение отдельно проложенных защитных алюминиевых проводников должно быть не менее 16 мм 2 .

1.7.128. В системе ТN для обеспечения требований 1.7.88 нулевые защитные проводники рекомендуется прокладывать совместно или в непосредственной близости с фазными проводниками.

Таблица 1.7.6

Значение коэффициента k для изолированных защитных проводников, не входящих в кабель, и для неизолированных проводников, касающихся оболочки кабелей (начальная температура проводника принята равной 30 °С)

Параметр

Материал изоляции

Поливинилхлорид (ПВХ)

Поливинилхлорид (ПВХ)

Бутиловая резина

Конечная температура, °С

k проводника:

— медного

— алюминиевого

— стального

Таблица 1.7.7

Значение коэффициента k для защитного проводника, входящего в многожильный кабель

Параметр

Материал изоляции

Поливинилхлорид (ПВХ)

Сшитый полиэтилен, этиленпропиленовая резина

Бутиловая резина

Начальная температура, °С

Конечная температура, °С

Алюминий

Максимальная температура, °С

Максимальная температура, °С

* Указанные температуры допускаются, если они не ухудшают качество соединений.

1.7.129. В местах, где возможно повреждение изоляции фазных проводников в результате искрения между неизолированным нулевым защитным проводником и металлической оболочкой или конструкцией (например, при прокладке проводов в трубах, коробах, лотках), нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников.

1.7.130. Неизолированные РЕ -проводники должны быть защищены от коррозии. В местах пересечения РЕ -проводников с кабелями, трубопроводами, железнодорожными путями, в местах их ввода в здания и в других местах, где возможны механические повреждения РЕ -проводников, эти проводники должны быть защищены.

В местах пересечения температурных и осадочных швов должна быть предусмотрена компенсация длины РЕ -проводников.

Совмещенные нулевые защитные и нулевые рабочие проводники (pen -проводники)

1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм 2 по меди или 16 мм 2 по алюминию, функции нулевого защитного (РЕ ) и нулевого рабочего (N ) проводников могут быть совмещены в одном проводнике (pen -проводник).

1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии.

1.7.133. Не допускается использование сторонних проводящих частей в качестве единственного pen -проводника.

Это требование не исключает использования открытых и сторонних проводящих частей в качестве дополнительного pen -проводника при присоединении их к системе уравнивания потенциалов.

1.7.134. Специально предусмотренные pen -проводники должны соответствовать требованиям 1.7.126 к сечению защитных проводников, а также требованиям гл. 2.1 к нулевому рабочему проводнику.

Изоляция pen -проводников должна быть равноценна изоляции фазных проводников. Не требуется изолировать шину PEN сборных шин низковольтных комплектных устройств.

1.7.135. Когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения pen -проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. pen -проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ -проводника.

Проводники системы уравнивания потенциалов

1.7.136. В качестве проводников системы уравнивания потенциалов могут быть использованы открытые и сторонние проводящие части, указанные в 1.7.121, или специально проложенные проводники, или их сочетание.

1.7.137. Сечение проводников основной системы уравнивания потенциалов должно быть не менее половины наибольшего сечения защитного проводника электроустановки, если сечение проводника уравнивания потенциалов при этом не превышает 25 мм 2 по меди или равноценное ему из других материалов. Применение проводников большего сечения, как правило, не требуется. Сечение проводников основной системы уравнивания потенциалов в любом случае должно быть не менее: медных - 6 мм 2 , алюминиевых - 16 мм 2 , стальных - 50 мм 2 .

1.7.138. Сечение проводников дополнительной системы уравнивания потенциалов должно быть не менее:

    при соединении двух открытых проводящих частей - сечения меньшего из защитных проводников, подключенных к этим частям;

    при соединении открытой проводящей части и сторонней проводящей части - половины сечения защитного проводника, подключенного к открытой проводящей части.

Сечения проводников дополнительного уравнивания потенциалов, не входящих в состав кабеля, должны соответствовать требованиям 1.7.127.

Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов

1.7.139. Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов должны быть надежными и обеспечивать непрерывность электрической цепи. Соединения стальных проводников рекомендуется выполнять посредством сварки. Допускается в помещениях и в наружных установках без агрессивных сред соединять заземляющие и нулевые защитные проводники другими способами, обеспечивающими требования ГОСТ 10434 «Соединения контактные электрические. Общие технические требования» ко 2-му классу соединений.

Соединения должны быть защищены от коррозии и механических повреждений.

Для болтовых соединений должны быть предусмотрены меры против ослабления контакта.

1.7.140. Соединения должны быть доступны для осмотра и выполнения испытаний за исключением соединений, заполненных компаундом или герметизированных, а также сварных, паяных и спрессованных присоединений к нагревательным элементам в системах обогрева и их соединений, находящихся в полах, стенах, перекрытиях и в земле.

1.7.141. При применении устройств контроля непрерывности цепи заземления не допускается включать их катушки последовательно (в рассечку) с защитными проводниками.

1.7.142. Присоединения заземляющих и нулевых защитных проводников и проводников уравнивания потенциалов к открытым проводящим частям должны быть выполнены при помощи болтовых соединений или сварки.

Присоединения оборудования, подвергающегося частому демонтажу или установленного на движущихся частях или частях, подверженных сотрясениям и вибрации, должны выполняться при помощи гибких проводников.

Соединения защитных проводников электропроводок и ВЛ следует выполнять теми же методами, что и соединения фазных проводников.

При использовании естественных заземлителей для заземления электроустановок и сторонних проводящих частей в качестве защитных проводников и проводников уравнивания потенциалов контактные соединения следует выполнять методами, предусмотренными ГОСТ 12.1.030 «ССБТ. Электробезопасность. Защитное заземление, зануление».

1.7.143. Места и способы присоединения заземляющих проводников к протяженным естественным заземлителям (например, к трубопроводам) должны быть выбраны такими, чтобы при разъединении заземлителей для ремонтных работ ожидаемые напряжения прикосновения и расчетные значения сопротивления заземляющего устройства не превышали безопасных значений.

Шунтирование водомеров, задвижек и т. п. следует выполнять при помощи проводника соответствующего сечения в зависимости от того, используется ли он в качестве защитного проводника системы уравнивания потенциалов, нулевого защитного проводника или защитного заземляющего проводника.

1.7.144. Присоединение каждой открытой проводящей части электроустановки к нулевому защитному или защитному заземляющему проводнику должно быть выполнено при помощи отдельного ответвления. Последовательное включение в защитный проводник открытых проводящих частей не допускается.

Присоединение проводящих частей к основной системе уравнивания потенциалов должно быть выполнено также при помощи отдельных ответвлений.

Присоединение проводящих частей к дополнительной системе уравнивания потенциалов может быть выполнено при помощи как отдельных ответвлений, так и присоединения к одному общему неразъемному проводнику.

1.7.145. Не допускается включать коммутационные аппараты в цепи РЕ - и pen -проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Допускается также одновременное отключение всех проводников на вводе в электроустановки индивидуальных жилых, дачных и садовых домов и аналогичных им объектов, питающихся по однофазным ответвлениям от ВЛ. При этом разделение pen -проводника на РЕ - и n -проводники должно быть выполнено до вводного защитно-коммутационного аппарата.

1.7.146. Если защитные проводники и/или проводники уравнивания потенциалов могут быть разъединены при помощи того же штепсельного соединителя, что и соответствующие фазные проводники, розетка и вилка штепсельного соединителя должны иметь специальные защитные контакты для присоединения к ним защитных проводников или проводников уравнивания потенциалов.

Если корпус штепсельной розетки выполнен из металла, он должен быть присоединен к защитному контакту этой розетки.

Переносные электроприемники

1.7.147. К переносным электроприемникам в Правилах отнесены электроприемники, которые могут находиться в руках человека в процессе их эксплуатации (ручной электроинструмент, переносные бытовые электроприборы, переносная радиоэлектронная аппаратура и т. п.).

1.7.148. Питание переносных электроприемников переменного тока следует выполнять от сети напряжением не выше 380/220 В.

В зависимости от категории помещения по уровню опасности поражения людей электрическим током (см. гл. 1.1) для защиты при косвенном прикосновении в цепях, питающих переносные электроприемники, могут быть применены автоматическое отключение питания, защитное электрическое разделение цепей, сверхнизкое напряжение, двойная изоляция.

1.7.149. При применении автоматического отключения питания металлические корпуса переносных электроприемников, за исключением электроприемников с двойной изоляцией, должны быть присоединены к нулевому защитному проводнику в системе TN или заземлены в системе IT , для чего должен быть предусмотрен специальный защитный (РЕ ) проводник, расположенный в одной оболочке с фазными проводниками (третья жила кабеля или провода -для электроприемников однофазного и постоянного тока, четвертая или пятая жила - для электроприемников трехфазного тока), присоединяемый к корпусу электроприемника и к защитному контакту вилки штепсельного соединителя. РЕ -проводник должен быть медным, гибким, его сечение должно быть равно сечению фазных проводников. Использование для этой цели нулевого рабочего (N ) проводника, в том числе расположенного в общей оболочке с фазными проводниками, не допускается.

1.7.150. Допускается применять стационарные и отдельные переносные защитные проводники и проводники уравнивания потенциалов для переносных электроприемников испытательных лабораторий и экспериментальных установок, перемещение которых в период их работы не предусматривается. При этом стационарные проводники должны удовлетворять требованиям 1.7.121-1.7.130, а переносные проводники должны быть медными, гибкими и иметь сечение не меньше чем у фазных проводников. При прокладке таких проводников не в составе общего с фазными проводниками кабеля их сечения должны быть не менее указанных в 1.7.127.

1.7.151. Для дополнительной защиты от прямого прикосновения и при косвенном прикосновении штепсельные розетки с номинальным током не более 20 А наружной установки, а также внутренней установки, но к которым могут быть подключены переносные электроприемники, используемые вне зданий либо в помещениях с повышенной опасностью и особо опасных, должны быть защищены устройствами защитного отключения с номинальным отключающим дифференциальным током не более 30 мА. Допускается применение ручного электроинструмента, оборудованного УЗО-вилками.

При применении защитного электрического разделения цепей в стесненных помещениях с проводящим полом, стенами и потолком, а также при наличии требований в соответствующих главах ПУЭ в других помещениях с особой опасностью, каждая розетка должна питаться от индивидуального разделительного трансформатора или от его отдельной обмотки.

При применении сверхнизкого напряжения питание переносных электроприемников напряжением до 50 В должно осуществляться от безопасного разделительного трансформатора.

1.7.152. Для присоединения переносных электроприемников к питающей сети следует применять штепсельные соединители, соответствующие требованиям 1.7.146.

В штепсельных соединителях переносных электроприемников, удлинительных проводов и кабелей проводник со стороны источника питания должен быть присоединен к розетке, а со стороны электроприемника - к вилке.

1.7.154. Защитные проводники переносных проводов и кабелей должны быть обозначены желто-зелеными полосами.

Передвижные электроустановки

1.7.155. Требования к передвижным электроустановкам не распространяются на:

  • судовые электроустановки;
  • электрооборудование, размещенное на движущихся частях станков, машин и механизмов;
  • электрифицированный транспорт;
  • жилые автофургоны.

Для испытательных лабораторий должны также выполняться требования других соответствующих нормативных документов.

1.7.156. Автономный передвижной источник питания электроэнергией - такой источник, который позволяет осуществлять питание потребителей независимо от стационарных источников электроэнергии (энергосистемы).

1.7.157. Передвижные электроустановки могут получать питание от стационарных или автономных передвижных источников электроэнергии.

Питание от стационарной электрической сети должно, как правило, выполняться от источника с глухозаземленной нейтралью с применением систем TN-S или TN-C-S . Объединение функций нулевого защитного проводника РЕ и нулевого рабочего проводника N в одном общем проводнике PEN внутри передвижной электроустановки не допускается. Разделение pen -проводника питающей линии на РЕ - и n -проводники должно быть выполнено в точке подключения установки к источнику питания.

При питании от автономного передвижного источника его нейтраль, как правило, должна быть изолирована.

1.7.158. При питании стационарных электроприемников от автономных передвижных источников питания режим нейтрали источника питания и меры защиты должны соответствовать режиму нейтрали и мерам защиты, принятым для стационарных электроприемников.

1.7.159. В случае питания передвижной электроустановки от стационарного источника питания для защиты при косвенном прикосновении должно быть выполнено автоматическое отключение питания в соответствии с 1.7.79 с применением устройства защиты от сверхтоков. При этом время отключения, приведенное в табл. 1.7.1, должно быть уменьшено вдвое либо дополнительно к устройству защиты от сверхтоков должно быть применено устройство защитного отключения, реагирующее на дифференциальный ток.

В специальных электроустановках допускается применение УЗО, реагирующих на потенциал корпуса относительно земли.

При применении УЗО, реагирующего на потенциал корпуса относительно земли, уставка по значению отключающего напряжения должна быть равной 25 В при времени отключения не более 5 с.

1.7.160. В точке подключения передвижной электроустановки к источнику питания должно быть установлено устройство защиты от сверхтоков и УЗО, реагирующее на дифференциальный ток, номинальный отключающий дифференциальный ток которого должен быть на 1-2 ступени больше соответствующего тока УЗО, установленного на вводе в передвижную электроустановку.

При необходимости на вводе в передвижную электроустановку может быть применено защитное электрическое разделение цепей в соответствии с 1.7.85. При этом разделительный трансформатор, а также вводное защитное устройство должны быть помещены в изолирующую оболочку.

Устройство присоединения ввода питания в передвижную электроустановку должно иметь двойную изоляцию.

1.7.161. При применении автоматического отключения питания в системе IT для защиты при косвенном прикосновении должны быть выполнены:

защитное заземление в сочетании с непрерывным контролем изоляции, действующим на сигнал;

автоматическое отключение питания, обеспечивающее время отключения при двухфазном замыкании на открытые проводящие части в соответствии с табл. 1.7.10.

Таблица 1.7.10

Наибольшее допустимое время защитного автоматического отключения для системы IT в передвижных электроустановках, питающихся от автономного передвижного источника

Для обеспечения автоматического отключения питания должно быть применено: устройство защиты от сверхтоков в сочетании с УЗО, реагирующим на дифференциальный ток, или устройством непрерывного контроля изоляции, действующим на отключение, или, в соответствии с 1.7.159, УЗО, реагирующим на потенциал корпуса относительно земли.

1.7.162. На вводе в передвижную электроустановку должна быть предусмотрена главная шина уравнивания потенциалов, соответствующая требованиям 1.7.119 к главной заземляющей шине, к которой должны быть присоединены:

    нулевой защитный проводник РЕ или защитный проводник РЕ питающей линии;

    защитный проводник передвижной электроустановки с присоединенными к нему защитными проводниками открытых проводящих частей;

    проводники уравнивания потенциалов корпуса и других сторонних проводящих частей передвижной электроустановки;

    заземляющий проводник, присоединенный к местному заземлителю передвижной электроустановки (при его наличии).

При необходимости открытые и сторонние проводящие части должны быть соединены между собой посредством проводников дополнительного уравнивания потенциалов.

1.7.163. Защитное заземление передвижной электроустановки в системе IT должно быть выполнено с соблюдением требований либо к его сопротивлению, либо к напряжению прикосновения при однофазном замыкании на открытые проводящие части.

При выполнении заземляющего устройства с соблюдением требований к его сопротивлению значение его сопротивления не должно превышать 25 Ом. Допускается повышение указанного сопротивления в соответствии с 1.7.108.

При выполнении заземляющего устройства с соблюдением требований к напряжению прикосновения сопротивление заземляющего устройства не нормируется. В этом случае должно быть выполнено условие:

R з £ 25/I з,

где R з - сопротивление заземляющего устройства передвижной электроустановки, Ом;

I з - полный ток однофазного замыкания на открытые проводящие части передвижной электроустановки, А.

1.7.164. Допускается не выполнять местный заземлитель для защитного заземления передвижной электроустановки, питающейся от автономного передвижного источника питания с изолированной нейтралью, в следующих случаях:

1) автономный источник питания и электроприемники расположены непосредственно на передвижной электроустановке, их корпуса соединены между собой при помощи защитного проводника, а от источника не питаются другие электроустановки;

2) автономный передвижной источник питания имеет свое заземляющее устройство для защитного заземления, все открытые проводящие части передвижной электроустановки, ее корпус и другие сторонние проводящие части надежно соединены с корпусом автономного передвижного источника при помощи защитного проводника, а при двухфазном замыкании на разные корпуса электрооборудования в передвижной электроустановке обеспечивается время автоматического отключения питания в соответствии с табл. 1.7.10.

1.7.165. Автономные передвижные источники питания с изолированной нейтралью должны иметь устройство непрерывного контроля сопротивления изоляции относительно корпуса (земли) со световым и звуковым сигналами. Должна быть обеспечена возможность проверки исправности устройства контроля изоляции и его отключения.

Допускается не устанавливать устройство непрерывного контроля изоляции с действием на сигнал на передвижной электроустановке, питающейся от такого автономного передвижного источника, если при этом выполняется условие 1.7.164, пп. 2.

1.7.166. Защита от прямого прикосновения в передвижных электроустановках должна быть обеспечена применением изоляции токоведущих частей, ограждений и оболочек со степенью защиты не менее IP 2X. Применение барьеров и размещение вне пределов досягаемости не допускается.

В цепях, питающих штепсельные розетки для подключения электрооборудования, используемого вне помещения передвижной установки, должна быть выполнена дополнительная защита в соответствии с 1.7.151.

1.7.167. Защитные и заземляющие проводники и проводники уравнивания потенциалов должны быть медными, гибкими, как правило, находиться в общей оболочке с фазными проводниками. Сечение проводников должно соответствовать требованиям:

  • защитных - 1.7.126-1.7.127;
  • заземляющих - 1.7.113;
  • уравнивания потенциалов - 1.7.136-1.7.138.

При применении системы IT допускается прокладка защитных и заземляющих проводников и проводников уравнивания потенциалов отдельно от фазных проводников.

1.7.168. Допускается одновременное отключение всех проводников линии, питающей передвижную электроустановку, включая защитный проводник при помощи одного коммутационного аппарата (разъема).

1.7.169. Если передвижная электроустановка питается с использованием штепсельных соединителей, вилка штепсельного соединителя должна быть подключена со стороны передвижной электроустановки и иметь оболочку из изолирующего материала.

Электроустановки помещений для содержания животных

1.7.170. Питание электроустановок животноводческих помещений следует, как правило, выполнять от сети напряжением 380/220 В переменного тока.

1.7.171. Для защиты людей и животных при косвенном прикосновении должно быть выполнено автоматическое отключение питания с применением системы TN-C-S. Разделение PEN -проводника на нулевой защитный (РЕ ) и нулевой рабочий (N ) проводники следует выполнять на вводном щитке. При питании таких электроустановок от встроенных и пристроенных подстанций должна быть применена система TN-S , при этом нулевой рабочий проводник должен иметь изоляцию, равноценную изоляции фазных проводников на всем его протяжении.

Время защитного автоматического отключения питания в помещениях для содержания животных, а также в помещениях, связанных с ними при помощи сторонних проводящих частей, должно соответствовать табл. 1.7.11.

Таблица 1.7.11

Наибольшее допустимое время защитного автоматического отключения для системы TN в помещениях для содержания животных

Если указанное время отключения не может быть гарантировано, необходимы дополнительные защитные меры, например дополнительное уравнивание потенциалов.

1.7.172. pen- проводник на вводе в помещение должен быть повторно заземлен. Значение сопротивления повторного заземления должно соответствовать 1.7.103.

1.7.173. В помещениях для содержания животных необходимо предусматривать защиту не только людей, но и животных, для чего должна быть выполнена дополнительная система уравнивания потенциалов, соединяющая все открытые и сторонние проводящие части, доступные одновременному прикосновению (трубы водопровода, вакуумпровода, металлические ограждения стойл, металлические привязи и др.).

1.7.174. В зоне размещения животных в полу должно быть выполнено выравнивание потенциалов при помощи металлической сетки или другого устройства, которое должно быть соединено с дополнительной системой уравнивания потенциалов.

1.7.175. Устройство выравнивания и уравнивания электрических потенциалов должно обеспечивать в нормальном режиме работы электрооборудования напряжение прикосновения не более 0,2 В, а в аварийном режиме при времени отключения более указанного в табл. 1.7.11 для электроустановок в помещениях с повышенной опасностью, особо опасных и в наружных установках - не более 12 В.

1.7.176. Для всех групповых цепей, питающих штепсельные розетки, должна быть дополнительная защита от прямого прикосновения при помощи УЗО с номинальным отключающим дифференциальным током не более 30 мА.

1.7.177. В животноводческих помещениях, в которых отсутствуют условия, требующие выполнения выравнивания потенциалов, должна быть выполнена защита при помощи УЗО с номинальным отключающим дифференциальным током не менее 100 мА, устанавливаемых на вводном щитке.

Виды заземления.. Защитное заземление.. Защитная функция заземления.. Рабочее (функциональное) заземление.. Меры защиты от поражения электрическим током.. Территориально сближенные заземляющие устройства.. Растекание токов.. Зона растекания.. Зона нулевого потенциала.. Система уравнивания потенциалов (СУП).. Главная заземляющая шина (ГЗШ).. Приоритет защитного заземления.. Разность потенциалов между системами заземления.. Шаговое напряжение.. Соединение заземлителей на ГЗШ.. Заземляющие устройства молниезащиты.. Отдельно стоящий молниеотвод.. Инструкция по устройству молниезащиты СО 153-34.21.122-2003.

Глава 1.7. ПУЭ 7 издания «Заземление и защитные меры электробезопасности» часто представляет определенные трудности понимания для начинающих проектировщиков. Затруднения связаны с тем, что требования главы 1.7 имеют общий характер и обязательны для электроустановок любого назначения и напряжения. Дополнительные требования к заземлению и защитным мерам электробезопасности, учитывающие особенности конкретных видов электроустановок, разбросаны по другим разделам ПУЭ, а также содержатся в ведомственных нормативных документах и инструкциях.

Это приводит к путанице в толковании требований ПУЭ, касающихся защитных мер электробезопасности и порождает много вопросов, в частности, по устройству территориально сближенных заземлений разных назначений.

Виды заземления
Заземление делится на два основных вида по выполняемой роли — защитное и рабочее (функциональное). Также в различных источниках могут употребляться другие интерпретации функционального заземления, такие как: «инструментальное», «измерительное», «информационное», «схемное» и т. п.

Защитное заземление – это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29). Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в аварийном режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных
цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Рабочее (функциональное) заземление (ПУЭ 1.7.30) – это заземление точки или точек токоведущих частей электроустановки, выполняемое для
обеспечения работы электроустановки (не в целях электробезопасности).
Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или
оборудования, т.е. для их работы в обычном режиме.

Защитное заземление

Защитное действие заземления основано на двух принципах:
1.
Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим объектом и другими проводящими объектами, имеющими естественное заземление.
2. Отвод тока утечки в случае неисправности электрооборудования.

Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус оборудования вследствие нарушения изоляции. Одной из основных мер защиты от поражения электрическим током (ПУЭ 1.7.51.) является защитное заземление в сочетании с уравниванием потенциалов и защитным отключением питания.

ПУЭ п. 1.7.51 . Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие мерызащиты при косвенном прикосновении:

· защитное заземление;

· автоматическое отключение питания;

· уравнивание потенциалов;

· выравнивание потенциалов;

· двойная или усиленная изоляция;

· сверхнизкое (малое) напряжение;

· защитное электрическое разделение цепей;

· изолирующие (непроводящие) помещения, зоны, площадки.


В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Эффективность защитных мер

Поскольку опасность поражения электрическим током определяется сочетанием значения напряжения прикосновения и продолжительности его воздействия на человека, меры защиты от поражения электрическим током должны обеспечить понижение до безопасных значений напряжения прикосновения, возникающего между доступными прикосновению открытыми проводящими частями и сторонними проводящими частями при повреждении изоляции в электроустановке.
В зависимости от сочетания применяемых мер защиты возможны следующие варианты:


1. Оборудование не заземлено, УЗО отсутствует. Никакие меры защиты не применяются. В этом случае нарушение изоляции не будет обнаружено, а корпус оборудования будет находиться под фазным потенциалом.
Прикосновение к такому неисправному оборудованию может быть смертельно опасным!
Нужно помнить, что современные электроприборы, имеющие импульсный источник вторичного электропитания и снабженные трехполюсной вилкой могут иметь опасный потенциал на корпусе даже когда они полностью исправны.
Такие приборы в обязательном порядке должны подключаться к розеткам с заземляющими контактами.

2. Корпус электрооборудования заземлен, УЗО отсутствует. Если при нарушении изоляции ток утечки по цепи фаза-корпус-
заземлитель превышает порог срабатывания автоматического выключателя, защищающего эту цепь, то автомат сработает и отключит неисправный участок сети. Но если ток утечки недостаточен для срабатывания защиты, то на заземлителе может возникнуть наибольшее действующее напряжение: Umax = Rз Iн , где − сопротивление заземлителя, – ток срабатывания автоматического выключателя, защищающего эту цепь.
При повышенном сопротивлении заземлителя и большом номинальном токе автомата потенциал на корпусе оборудования может достигать значительной величины.
Получается , что одно лишь заземление оборудования (при отсутствии УЗО) не является достаточным для обеспечения безопасности персонала. При отсутствии УЗО заземление должно выполняться в сочетании с системой уравнивания потенциалов (СУП), то есть электрического соединения PE проводников и всех доступных для прикосновения металлических частей здания (в первую очередь водопроводы и трубопроводы).
В этом случае , даже если заземлитель окажется под напряжением, то под одинаковым напряжением оказываются все
металлические и доступные для прикосновения предметы, что существенно снижает риск поражения током.

3. УЗО в электрической цепи установлено, корпус прибора не заземлен. При нарушении изоляции корпус прибора будет находиться под фазным потенциалом до тех пор, пока не замкнута цепь для прохождения тока утечки. При касании неисправного оборудования и предмета, имеющего естественное заземление, ток утечки пойдет через тело человека, но УЗО сразу же отключит участок сети с неисправностью. При этом воздействие тока утечки на человека ограничивается временем срабатывания УЗО (0,02÷0,3 сек) и не приводит, как правило, к серьезным последствиям.
УЗО , применяемые для защиты людей от поражения электрическим током, во всех случаях должны иметь номинальный дифференциальный ток срабатывания не более 30 мА.

4. Корпус электрооборудования заземлен, УЗО в электрической цепи присутствует – самый безопасный вариант. При нарушении изоляции и попадании фазного напряжения на заземленный корпус оборудования появляется ток утечки на землю. УЗО немедленно обнаруживает этот ток, даже если он весьма незначителен (10 или 30 мА) и отключает неисправный участок сети.

Защитное заземление служит исключительно для защиты людей от поражения электрическим током. Его можно не применять только для оборудования с напряжением питания до 42 В переменного или 110 В постоянного тока, за исключением взрывоопасных зон. Во взрывоопасных помещениях и устройствах защитному заземлению подлежат электрооборудование при всех применяемых напряжениях.

Наиболее эффективно заземление в комплексе с использованием системы уравнивания потенциалов и устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин, а неисправный участок сети будет автоматически отключен в течение очень короткого промежутка времени.

Территориально сближенные заземляющие устройства

Наличие защитного заземления часто приводит к увеличению уровня помех в системах автоматического управления, однако защитное заземление является необходимым, а защитная и сигнальная земля должны выполняться в соответствии с ПУЭ (п. 1.7.55) .

ПУЭ п.1.7.55. Для заземления в электроустановках разных назначений и напряжений, территориально сближенных , следует, как правило, применять одно общее заземляющее устройство.

Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д. в течение всего периода эксплуатации.

В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.

Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.

При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.


Здесь ключевым является понятие «территориально сближенных» электроустановок и их заземляющих устройств.

Если мы рассмотрим заземлитель, на который замыкаются токи утечки, то растекание токов идет в радиальном направлении от заземлителя.
Пространство вокруг заземлителя, где обнаруживается ток растекания, называется зоной растекания.

Внутри зоны растекания тока (пространство вокруг заземлителя с радиусом 20 м) между двумя любыми точками на поверхности земли всегда имеется разность потенциалов.
За пределами этой зоны электрический потенциал, обусловленный токами растекания в слоях земли уже практически не обнаруживается и может быть условно принят равным нулю.

К территориально сближенным относятся заземляющие устройства, которые расположены на таком расстоянии друг от друга, что между ними отсутствует зона нулевого потенциала, т. е. на расстоянии < 20 м.

При наличии между заземляющими устройствами зоны нулевого потенциала такие заземляющие устройства считаются «независимыми». Расстояние между двумя этими заземлителями должно быть ≥ 20 м.

«Как правило» - не всегда является правилом

Смысл требования п. 1.7.55 ПУЭ в том , что в территориально сближенных электроустановках разных назначений, защитное и функциональное заземление в здании (сооружении), а также заземление системы молниезащиты этого здания (сооружения) следует, как правило , осуществлять с помощью одного общего заземляющего устройства, – если это не запрещается требованиями изготовителя (разработчика) оборудования, подлежащего функциональному заземлению, или требованиями нормативных документов, относящихся к выполнению молниезащиты.

Если изготовитель (разработчик), например, информационного оборудования предусматривает устройство отдельного контура функционального заземления, без которого это оборудование не работает, то проектировщиком «должны быть приняты специальные меры защиты от поражения электрическим током, исключающие дновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции».

Это означает , что заземлители защитного и функционального заземления должны быть соединены между собой на шине системы уравнивания потенциалов (СУП) с целью защиты персонала, поскольку эти два вопроса нельзя рассматривать изолированно один от другого, не нарушая стандартов безопасности труда.

Особенности проектирования заслуживают отдельного рассмотрения. Пока зафиксируем, что при устройстве отдельного функционального заземления «в первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению».

ГОСТ Р 50571-4-44- 2011 (МЭК 60364-4-44) также содержит требование о том, что все заземлители, относящиеся к зданию, т.е. территориально сближенные заземлители защитного заземления, функционального заземления и молниезащиты, должны быть, как правило , соединены между собой.
Соединение должно быть выполнено в одной точке. Такой точкой должна быть главная заземляющая шина (ГЗШ) или шина системы уравнивания потенциалов (СУП).

Расставляем приоритеты

При проектировании заземляющих устройств , проектировщики должны руководствоваться требованиями ПУЭ, а также другими нормативными документами и инструкциями, относящимися к устройству защитного, функционального заземления и заземления молниезащиты. Судя по дискуссиям в интернете, есть недопонимание приоритетов, люди ссылаются на якобы противоречивые требования к устройству заземлений в разных нормативных документах.

На самом деле никаких противоречий нет . ПУЭ, п. 1.7.55 расставляет приоритеты: «Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок…», но «В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению ».
Другими словами – на первом месте должна быть защита жизни и здоровья людей.

Всегда существует возможность возникновения разности потенциалов между раздельными системами заземления, если эти системы заземления являются территориально сближенными, т. е. находятся в пределах зоны ненулевого потенциала. Опасная разность потенциалов может возникнуть, например, при коротком замыкании на корпус электрооборудования в сети TN-S (до срабатывания системы защиты), при срабатывании молниезащиты (шаговое напряжение), при воздействии внешних электромагнитных полей и др.
Этим и объясняется требование к объединению территориально сближенных заземлителей разных назначений в одно общее заземляющее устройство. При соединении заземлителей на ГЗШ или шине СУП, потенциалы различных заземляющих устройств уравниваются, и жизни людей уже ничто не угрожает.

О заземляющих устройствах молниезащиты

В том же п. 1.7.55 ПУЭ также читаем: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». На этот пункт проектировщики часто ссылаются для обоснования своей позиции, не учитывая, что требования главы 1.7 имеют общий характер.

В первую очередь это требование означает, что защитное заземление объекта из одного или нескольких территориально сближенных зданий и сооружений, должно быть общим для этих зданий. То же самое и по молниезащите. Общая система молниезащиты на весь объект.

Что касается совмещения заземляющих устройств (защитного и молниезащиты) – они могут быть общими, могут быть раздельными – это зависит от типа молниеприемника, от расположения его на объекте и т. д. Это выясняется после расчетов молниезащиты с учетом требований инструкций по устройству молниезащиты (РД 34.21.122-87, СО 153-34.21.122-2003).

СО 153 п. 3.2.3.1. Во всех случаях, за исключением использования отдельно стоящего молниеотвода , заземлитель молниезащиты следует совместить с заземлителями электроустановок и средств связи. Если эти заземлители должны быть разделены по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.


СО 153 выделяет отдельно стоящий молниеотвод со своим заземляющим устройством. В остальных случаях, если вы применяете, например, стержневой или тросовый молниеотвод, установленный на защищаемом объекте , молниеприемную сетку на кровле или саму кровлю в качестве молниеприемника, заземлитель молниезащиты должен быть совмещен с заземлителями электроустановок. Если в качестве заземлителя используется фундамент здания, то присоединение к фундаменту токоотвода и проводника, присоединяющего систему молниезащиты к ГЗШ, должно обязательно выполняться на разных болтах или разных закладных частях.

Если эти заземлители должны быть раздельными по технологическим причинам , они также должны быть объединены в общую систему с помощью системы уравнивания потенциалов. При этом присоединение заземлителя молниезащиты к основной системе уравнивания потенциалов должно выполняться заземляющими проводниками непосредственно от заземлителя молниезащиты.

Если используется отдельно стоящий молниеотвод , то согласно СО 153 он должен иметь отдельное заземляющее устройство .
ПУЭ (1.7.55) этому не противоречит, а только требует обеспечить приоритет защитного заземления для защиты жизни и здоровья людей.
Поэтому после расчетов зон молниезащиты нужно проверять, на каком расстоянии окажутся заземлители разных назначений друг от друга.
Если между ними в земле есть зона нулевого потенциала , то заземлитель молниезащиты может быть независимым.
Если заземляющие устройства окажутся территориально сближенными (отсутствует зона нулевого потенциала), то существует возможность возникновения разности потенциалов между ними, угрожающих жизни и здоровью людей.
В этом случае расстояние между заземлителями должно быть увеличено (≥ 20м). Если это невозможно сделать, то должны быть приняты меры по уравниванию потенциалов заземлителей на шине СУП или ГЗШ.

Если статья Вам понравилась и Вы цените вложенные в этот проект усилия у Вас есть возможность внести посильный вклад в развитие сайта на странице

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью

Куда должен быть присоединен заземляющий проводник, если в PEN-проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN РУ до I кВ, установлен ТТ?
Ответ . Должен быть присоединен не к нейтрали трансформатора или генератора непосредственно, а к PEN- проводнику, по возможности сразу на ТТ. В таком случае разделение PEN-проводника на RE- и N- проводники в системе TN-S должно быть выполнено также за ТТ. ТТ следует размещать как можно ближе к выводу нейтрали трансформатора или генератора.
Каким должно быть сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора, или выводы источника однофазного тока?
Ответ . Должно быть в любое время года не более 2, 4 и 8 Ом соответственно при 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN- или PE- проводника ВЛ до 1 кВ при количестве отходящих линий не менее двух.
Каким должно быть сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора, или вывода источника однофазного тока?
Ответ. Должно быть не более 15, 30 и 60 Ом соответственного при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При удельном сопротивлении земли ρ > 100 Ом×м допускается увеличивать указанные нормы в 0,01 ρ раз, но не более десятикратного.
В каких точках сети должны быть выполнены повторные заземления PEN- проводника?
Ответ . Должны быть выполнены на концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания.
Каким должно быть общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN- проводника каждой ВЛ в любое время года?
Ответ . Должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. При удельном сопротивлении земли ρ > 100 Ом×м допускается увеличивать указанные нормы в 0,01ρ раз, но не более десятикратного.
Заземляющие устройства в электроустановках напряжением до 1 кВ с изолированной нейтралью
Какому условию должно соответствовать сопротивление заземляющего устройства, используемого для защитного заземления ОПЧ (открытая проводящая часть) в системе IT?
Ответ . Должно соответствовать условию:
R ≤ U пр /I
где R - сопротивление заземляющего устройства, Ом;
U пр - напряжение прикосновения, значение которого принимается равным 50 В; I - полный ток замыкания на землю, А.
Какие требования предъявляются к значениям сопротивления заземляющего устройства?
Ответ . Как правило, не требуется принимать значение этого сопротивления менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено условие
R ≤ U пр /I,
а мощность генераторов или трансформаторов не превышает 100 кВА, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.
Заземлители
Что может быть использовано в качестве естественных заземлителей?
Ответ . Могут быть использованы:
o металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;
o металлические трубы водопровода, проложенные в земле;
o обсадные трубы буровых скважин;
o металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.;
o рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
o другие находящиеся в земле металлические конструкции и сооружения;
o металлические оболочки бронированных кабелей, проложенных в земле. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
Допускается ли использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления?
Ответ . Использовать не допускается. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов.
Заземляющие проводники

Какое сечение должен иметь заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках до 1 кВ?
Ответ . Должен иметь сечение не менее: медный - 10 мм> 2 , алюминиевый - 16 мм 2 , стальной - 75 мм?.
Главная заземляющая шина

Что следует использовать в качестве главной заземляющей шины внутри вводного устройства? Ответ . Следует использовать шину PE.
Какие требования предъявляются к главной заземляющей шине?
Ответ . Ее сечение должно быть не менее сечения PE (PEN) - проводника питающей линии. Она должна быть, как правило, медной. Допускается применение ее из стали. Применение алюминиевых шин не допускается.
Какие требования предъявляются к установке главной заземляющей шины?
Ответ . В местах, доступных только квалифицированному персоналу, например, щитовых помещениях жилых домов, ее следует устанавливать открыто. В местах, доступных посторонним лицам, например, подъездах и подвалах домов, она должна иметь защитную оболочку - шкаф или ящик с запирающейся на ключ дверцей. На дверце или на стене над шиной должен быть нанесен знак.
Как должна быть выполнена главная заземляющая жила в случае, если здание имеет несколько обособленных вводов?
Ответ . Должна быть выполнена для каждого вводного устройства.

Защитные проводники (PE-проводники)

Какие проводники могут использоваться в качестве PE-проводников в электроустановках до 1 кВ?
Ответ . Могут использоваться:
- специально предусмотренные проводники, жилы многожильных кабелей, изолированные или неизолированные провода в общей оболочке с фазными проводами, стационарно проложенные изолированные или неизолированные проводники;
- ОПЧ электроустановок: алюминиевые оболочки кабелей, стальные трубы электропроводов, металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления;
- некоторые сторонние проводящие части: металлические строительные конструкции зданий и сооружений (фермы, колонны и т.п.), арматура железобетонных строительных конструкций зданий при условии выполнения требований, приведенных в ответе на вопрос 300, металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).
Могут ли быть использованы в качестве PE-проводников сторонние проводящие части?
Ответ . Они могут быть использованы, если отвечают требованиям настоящей главы к проводимости и, кроме того, одновременно отвечают следующим требованиям: непрерывность электрической цепи обеспечивается либо их конструкцией, либо соответствующими соединениями, защищенными от механических, химических и других повреждений; их демонтаж невозможен, если не предусмотрены меры по сохранению непрерывности цепи и ее проводимости.
Что не допускается использовать в качестве PE-проводников?
Ответ . Не допускается использовать: металлические оболочки изоляционных труб и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а также свинцовые оболочки проводов и кабелей; трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления; водопроводные трубы при наличии в них изолирующих вставок.
В каких случаях не допускается использовать нулевые защитные проводники в качестве защитных проводников?
Ответ . Не допускается использовать в качестве защитных проводников нулевые защитные проводники оборудования, питающегося по другим цепям, а также использовать ОПЧ электрооборудования в качестве нулевых защитных проводников для другого электрооборудования, за исключением оболочек и опорных конструкций шинопроводов и комплектных устройств заводского изготовления, обеспечивающих возможность подключения к ним защитных проводников в другом месте.
Какими должны быть наименьшие площади поперечного сечения защитных проводников?
Ответ . Должны соответствовать данным таблице 1
Таблица 1

Сечение фазных проводников, мм 2 Наименьшее сечение защитных проводников, мм
S≤16 S
16 16
S>35 S/2

Допускается, при необходимости, принимать сечение защитных проводников менее требуемых, если оно рассчитано по формуле (только для времени отключения ≤ 5 с): :
S ≥ I √ t/k
где S - площадь поперечного сечения защитного проводника, мм 2 ;
I - ток КЗ, обеспечивающий время отключения поврежденной цепи защитным аппаратом или за время не более 5 с, А;
t - время срабатывания защитного аппарата, с;
k - коэффициент, значение которого зависит от материала проводника, его изоляции, начальной и конечной температур. Значения k для защитных проводников в различных условиях приведены в табл. 1.7.6-1.7.9 главы 1.7 Правил устройства электроустановок (седьмое издание).

Совмещенные нулевые защитные и нулевые рабочие проводники (PEN-проводники)
В каких цепях могут быть совмещены в одном проводнике (PEN-проводник) функции нулевого защитного (PE) и нулевого рабочего (N) проводников?
Ответ . Могут быть совмещены в многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм 2 по меди или 16 мм 2 по алюминию.
В каких цепях не допускается совмещение функций нулевого защитного и нулевого рабочего проводников?
Ответ . Не допускается в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. Это требование не распространяется на ответвления от ВЛ до 1 кВ к однофазным потребителям электроэнергии.
Допускается ли использование сторонних проводящих частей в качестве единственного PEN-проводника?
Ответ . Такое использование не допускается. Это требование не исключает использования открытых и сторонних проводящих частей в качестве дополнительного PEN-проводника при присоединении их к системе уравнивания потенциалов.
Когда нулевой рабочий и нулевой защитный проводники разделены, начиная с какой-либо точки электроустановки, допускается ли объединять их за этой точкой по ходу распределения энергии?
Ответ . Такое объединение не допускается.
Соединения и присоединения заземляющих, защитных проводников и проводников системы управления и выравнивания потенциалов
Как должны быть выполнены присоединения заземляющих и нулевых защитных проводников и проводников уравнивания потенциалов к ОПЧ?
Ответ . Должны быть выполнены при помощи болтовых соединений или сварки.
Как должно быть выполнено присоединение каждой ОПЧ электроустановки к нулевому защитному или защитному заземляющему проводнику?
Ответ . Должно быть выполнено с помощью отдельного ответвления. Последовательное включение в защитный проводник ОПЧ не допускается.
Можно ли включать коммутационные аппараты в цепи PE- и PEN- проводников?
Ответ. Такое включение не допускается за исключением случаев питания электроприемников при помощи штепсельных розеток.
Какие требования предъявляются к розеткам и вилкам штепсельного соединения, если защитные проводники и/или проводники уравнивания потенциалов могут быть разъединены при помощи того же штепсельного соединения?
Ответ . Они должны иметь специальные защитные контакты для присоединения к ним защитных проводников или проводников уравнивания потенциалов. Переносные электроприемники
Какие меры могут быть применены для защиты при косвенном прикосновении в цепях, питающих переносные электроприемники?
Ответ . В зависимости от категории помещения по уровню опасности поражения людей электрическим током могут быть применены автоматическое отключение питания, защитное электрическое разделение цепей, сверхнизкое напряжение, двойная изоляция.

Какие требования к подключению к нулевому защитному проводнику в системе TN или к заземлению в системе IT металлических корпусов переносных электроприемников при применении автоматического отключение питания?

Ответ . Для этого должен быть предусмотрен специальный защитный (PE) проводник, расположенный в одной оболочке с фазными проводниками (третья жила кабеля или провода - для электроприемников однофазного и постоянного тока, четвертая или пятая жила - для электроприемников трехфазного тока), присоединяемый к корпусу электроприемника и к защитному контакту вилки штепсельного соединения. Использование для этих целей нулевого рабочего (N) проводника, в том числе расположенного в общей оболочке с фазными проводниками, не допускается.
Как должны быть дополнительно защищены штепсельные розетки с номинальным током не более 20 А наружной установки, а также внутренней установки, но к которым могут быть подключены переносные электроприемники, используемые вне зданий либо в помещениях с повышенной опасностью?
Ответ . Должны быть защищены УЗО с номинальным отключающим дифференциальным током не более 30 мА. Допускается применение ручного электроинструмента, оборудованного УЗО-вилками.
Передвижные электроустановки
Что должно быть применено для автоматического отключения питания?
Ответ. Должно быть применено: устройство защиты от сверхтоков в сочетании с УЗО, реагирующим на дифференциальный ток, или устройством непрерывного контроля изоляции, действующим на отключение, или УЗО, реагирующим на потенциал корпуса относительно земли.



top