Принцип усиления напряжения с помощью биполярного транзистора. Транзистор. Принцип работы

Принцип усиления напряжения с помощью биполярного транзистора. Транзистор. Принцип работы

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы .

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn . Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора :

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения . При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки . При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим . Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): I Б *β=I K .

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h 21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить h FE . Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (I К =β*I Б) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

И снова вперёд!

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером .

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой .

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(I К +I Б)/I Б =β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.


Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.


Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.


Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).

  1. Коллектор имеет более положительный потенциал, чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.


Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Биполярный транзистор.

Биполярный транзистор - электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока - основной "большой" ток, и управляющий "маленький" ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.


У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector иemitter ). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.


Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы - дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.


Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE - 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет "дотянуться" своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.


В итоге мы получаем два тока: маленький - от базы к эмиттеру I BE , и большой - от коллектора к эмиттеру I CE .

Если увеличить напряжение на базе, то в прослойке P собереться еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом,при небольшом изменении тока базы I B , сильно меняеться ток коллектора I С . Так и происходитусиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h21e , в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.


2. Расчет входного тока базы I b

Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно - I bmax и I bmin .

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить - около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).

Посчитаем I bmax и I bmin с помощью закона Ома:


2. Расчет выходного тока коллектора I С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).


3. Расчет выходного напряжения V out

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз - далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.


Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

    Режим отсечки (cut off mode).

    Активный режим (active mode).

    Режим насыщения (saturation mode).

    Инверсный ражим (reverse mode).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V - 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначаетсяβ , hfe или h21e , в зависимости от специфики расчетов, проводимых с транзисторов.

β - величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий - в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше - тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость - проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).

В зависимости от принципа действия и конструктивных признаков транзисторы подразделяются на два больших класса: биполярные и полевые .

Биполярный транзистор - это полупроводниковый прибор с двумя взаимодействующими между собой р-п-переходами и тремя или более выводами.

Полупроводниковый кристалл транзистора состоит из трех областей с чередующимися типами электропроводности, между которыми находятся два р-п -перехода. Средняя область обычно выполняется очень тонкой (доли микрона), поэтому р-п -переходы близко расположены один от другого.

В зависимости от порядка чередования областей полупроводника с различными типами электропроводности различают транзисторы р-п-р и п-р-п- типов. Упрощенные структуры и УГО разных типов транзисторов показаны на рисунке 1.23, а , б .

Рисунок 1.23 - Структура и УГО биполярных транзисторов

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором. В качестве основного материала для изготовления биполярных транзисторов в настоящее время используется кремний. При этом преимущественно изготовляют транзисторы п-р-п -типа, в которых основными носителями заряда являются электроны, имеющие подвижность в два-три раза выше, чем подвижность дырок.

Управление величиной протекающего в выходной цепи (в цепи коллектора или эмиттера) биполярного транзистора тока осуществляется с помощью тока в цепи управляющего электрода - базы . Базой называется средний слой в структуре транзистора. Крайние слои называются эмиттер (испускать, извергать) и коллектор (собирать). Концентрация примесей (а, следовательно, и основных носителей зарядов) в эмиттере существенно больше, чем в базе и больше, чем в коллекторе. Поэтому эмиттерная область самая низкоомная .

Для иллюстрации физических процессов в транзисторе воспользуемся упрощенной структурой транзистора п-р-п- типа, приведенной на рисунке 1.24. Для понимания принципа работы транзистора исключительно важно учитывать, что р-п -переходы транзистора сильно взаимодействуют друг с другом. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот.

В активном режиме (когда транзистор работает как усилительный элемент) к транзистору подключают два источника питания таким образом, чтобы эмиттерный переход был смещен в прямом направлении , а коллекторный - в обратном (рисунок 1.24). Под действием электрического поля источника Е БЭ через эмиттерный переход течет достаточно большой прямой ток I Э, который обеспечивается, главным образом, инжекцией электронов из эмиттера в базу Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей.



Рисунок 1.24 - Физические процессы в биполярном транзисторе

Поток электронов, обеспечивающий ток I Э через переход эмиттер - база показан на рисунке 1.24 широкой стрелкой. Часть инжектированных в область базы электронов (1 … 5%) рекомбинируют с основными для этой области носителями заряда - дырками, образуя во внешней цепи базы ток I Б. Вследствие большой разности концентраций основных носителей зарядов в эмиттере и базе, нескомпенсированные инжектированные в базу электроны движутся в глубь ее по направлению к коллектору .

Вблизи коллекторного р-п- перехода электроны попадают под действие ускоряющего электрического поля этого обратносмещенного перехода. А поскольку в базе они являются неосновными носителями, то происходит втягивание (экстракция ) электронов в область коллектора. В коллекторе электроны становятся основными носителями зарядов и легко доходят до коллекторного вывода, создавая ток во внешней цепи транзистора.

Таким образом, ток через базовый вывод транзистора определяют две встречно направленные составляющие тока . Если бы в базе процессы рекомбинации отсутствовали, то эти токи были бы равны между собой, а результирующий ток базы был бы равен нулю. Но так как процессы рекомбинации имеются в любом реальном транзисторе, то ток эмиттерного p-n -перехода несколько больше тока коллекторного p-n -перехода.

Для тока коллектора можно записать следующее равенство

, (1.9)

где a ст - статический коэффициент передачи тока эмиттера;

I КБО - обратный ток коллекторного перехода (тепловой ток) (у транзисторов малой мощности при нормальной температуре составляет 0, 015 ... 1 мкА).

На практике статический коэффициент передачи тока эмиттера a ст , взависимости от типа транзистора, может принимать значения в диапазоне 0,95 … 0,998.

Ток эмиттера в транзисторе численно является самым большим и равен

, (1.11)

где - статический коэффициент передачи тока базы в схеме с общим эмиттером (в справочной литературе используется обозначение h 21Э , обычно принимает значение b ст = 20 … 1000 в зависимости от типа и мощности транзистора).

Из ранее сказанного следует, что транзистор представляет собой управляемый элемент, поскольку значение его коллекторного (выходного) тока зависит от значений токов эмиттера и базы.

Заканчивая рассмотрение принципа работы биполярного транзистора, следует отметить, что сопротивление обратносмещенного коллекторного перехода (при подаче на него обратного напряжения) очень велико (сотни килоом). Поэтому в цепь коллектора можно включать нагрузочные резисторы с весьма большими сопротивлениями , тем самым практически не изменяя значения коллекторного тока. Соответственно в цепи нагрузки будет выделяться значительная мощность.

Сопротивление прямосмещенного эмиттерного перехода, напротив, весьма мало (десятки - сотни Ом). Поэтому при почти одинаковых значениях эмиттерного и коллекторного токов мощность, потребляемая в цепи эмиттера, оказывается существенно меньше мощности, выделяемой в цепи нагрузки. Это указывает на то, что транзистор является полупроводниковым прибором, усиливающим мощность .

Технология изготовления биполярных транзисторов может быть различной: сплавление , диффузия , эпитаксия . Это в значительной мере определяет характеристики прибора. Типовые структуры биполярных транзисторов, изготовленных различными методами, приведены на рисунке 1.25. В частности, на рисунке 1.25, а показана структура сплавного , на рисунке 1.25, б - эпитаксиально -диффузионного , на рисунке 1.25, в - планарного , на рисунке 1.25, г - мезапланарного транзисторов .



Рисунок 1.25 - Способы изготовления биполярных транзисторов

Режимы работы и схемы включения транзистора

На каждый р-п- переход транзистора может быть подано как прямое, так и обратное напряжение. В соответствии с этим различают четыре режима работы биполярного транзистора: режим отсечки , режим насыщения , активный режим и инверсный режим.

Активный режим обеспечивается подачей на эмиттерный переход прямого напряжения, а на коллекторный - обратного (основной режим работы транзистора). Этот режим соответствует максимальному значению коэффициента передачи тока эмиттера и обеспечивает минимальное искажение усиливаемого сигнала.

В инверсном режиме к коллекторному переходу приложено прямое напряжение, к эмиттерному - обратное (a ст ® min; используется очень редко).

В режиме насыщения оба перехода находятся под прямым смещением. В этом случае выходной ток не зависит от входного и определяется только параметрами нагрузки.

В режиме отсечки оба перехода смещены в обратных направлениях. Выходной ток близок к нулю.

Режимы насыщения и отсечки используется одновременно в ключевых схемах (при работе транзистора в ключевом режиме).

При использовании транзистора в электронных устройствах нужны два вывода для подачи входного сигнала и два вывода для подключения нагрузки (снятия выходного сигнала). Поскольку у транзистора всего три вывода, один из них должен быть общим для входного и выходного сигналов.

В зависимости от того, какой вывод транзистора является общим при подключении источника сигнала и нагрузки, различают три схемы включения транзистора: с общей базой (ОБ) (рисунок 1.26, а ); с общим эмиттером (ОЭ) (рисунок 1.26, б ); с общим коллектором (ОК) (рисунок 1.26, в ).

В этих схемах источники постоянного напряжения и резисторы обеспечивают режимы работы транзисторов по постоянному току, то есть необходимые значения напряжений и начальных токов. Входные сигналы переменного тока создаются источниками и вх. Они изменяют ток эмиттера (базы) транзистора, а, соответственно, и ток коллектора. Приращения тока коллектора (рисунок 1.26, а , б ) и тока эмиттера (рисунок 1.26, в ) создадут, соответственно, на резисторах R К и R Э приращения напряжений, которые и являются выходными сигналами и вых .



а б в

Рисунок 1.26 - Схемы включения транзистора

При определении схемы включения транзистора необходимо учитывать то, что сопротивление источника постоянного напряжения для переменного тока близко к нулю.

Вольт-амперные характеристики транзистора

Наиболее полно свойства биполярного транзистора описываются с помощью статических вольт-амперных характеристик. При этом различают входные и выходные ВАХ транзистора. Поскольку все три тока (базовый, коллекторный и эмиттерный) в транзисторе тесно взаимосвязаны, при анализе работы транзистора необходимо пользоваться одновременно входными и выходными ВАХ.

Каждой схеме включения транзистора соответствуют свои вольт-амперные характеристики, представляющие собой функциональную зависимость токов через транзистор от приложенных напряжений. Из-за нелинейного характера указанных зависимостей их представляют обычно в графической форме.

Транзистор, как четырехполюсник, характеризуется входными и выходными статическими ВАХ, показывающими соответственно зависимость входного тока от входного напряжения (при постоянном значении выходного напряжения транзистора) и выходного тока от выходного напряжения (при постоянном входном токе транзистора).

На рисунке 1.27 показаны статические ВАХ р-п-р -транзистора, включенного по схеме с ОЭ (наиболее часто применяемой на практике).



а б

Рисунок 1.27 - Статические ВАХ биполярного транзистора, включенного по схеме с ОЭ

Входная ВАХ (рисунок 1.27, а ) подобна прямой ветви ВАХ диода. Она представляет собой зависимость тока I Б от напряжения U БЭ U КЭ , то есть зависимость вида

. (1.12)

Из рисунка 1.27, а видно: чем больше напряжение U КЭ , тем правее смещается ветвь входной ВАХ. Это объясняется тем, что при увеличении обратносмещающего напряжения U КЭ происходит увеличение высоты потенциального барьера коллекторного р -п -перехода. А поскольку в транзисторе коллекторный и эмиттерный р -п -переходы сильно взаимодействуют, то это, в свою очередь, приводит к уменьшению базового тока при неизменном напряжении U БЭ .

Статические ВАХ, представленные на рисунке 1.27, а , сняты при нормальной температуре (20 °С). При повышении температуры эти характеристики будут смещаться влево, а при понижении - вправо. Это связано с тем, что при повышении температуры повышается собственная электропроводность полупроводников.

Для выходной цепи транзистора, включенного по схеме с ОЭ, строится семейство выходных ВАХ (рисунок 1.27, б ). Это обусловлено тем, что коллекторный ток транзистора зависит не только (и не столько, как видно из рисунка) от напряжения, приложенного к коллекторному переходу, но и от тока базы. Таким образом, выходной вольт-амперной характеристикой для схемы с ОЭ называется зависимость тока I К от напряжения U КЭ при фиксированном токе I Б , то есть зависимость вида

. (1.13)

Каждая из выходных ВАХ биполярного транзистора характеризуется в начале резким возрастанием выходного тока I К при возрастании выходного напряжения U КЭ , а затем, по мере дальнейшего увеличения напряжения, незначительным изменением тока.

На выходной ВАХ транзистора можно выделить три области, соответствующие различным режимам работы транзистора: область насыщения , область отсечки и область активной работы (усиления), соответствующая активному состоянию транзистора, когда ½U БЭ ½ > 0 и ½U КЭ ½> 0.

Входные и выходные статические ВАХ транзисторов используют при графо-аналитическом расчете каскадов, содержащих транзисторы.

Статические входные и выходные ВАХ биполярного транзистора р -п -р -типа для схемы включения с ОБ приведены на рисунке 1.28, а и 1.28, б соответственно.



а б

Рисунок 1.28 - Статические ВАХ биполярного транзистора для схемы включения с ОБ

Для схемы с ОБ входной статической ВАХ называют зависимость тока I Э от напряжения U ЭБ при фиксированном значении напряжения U КБ , то есть зависимость вида

. (1.14)

Выходной статической ВАХ для схемы с ОБ называется зависимость тока I К от напряжения U КБ при фиксированном токе I Э , то есть зависимость вида

. (1.15)

На рисунке 1.28, б можно выделить две области, соответствующие двум режимам работы транзистора: активный режим (U КБ < 0 и коллекторный переход смещен в обратном направлении); режим насыщения (U КБ > 0 и коллекторный переход смещен в прямом направлении).

Математическая модель биполярного транзистора

К настоящему времени известно много электрических моделей биполярных транзисторов. В системах автоматизации проектирования (САПР) радиоэлектронных средств наиболее часто используются: модели Эберса-Молла , обобщенная модель управления зарядом Гуммеля-Пуна, модель Линвилла, а также локальные П- и Т-образные модели линейных приращений Джиаколлето.

Рассмотрим, в качестве примера, один из вариантов модели Эберса-Молла (рисунок 1.29), отражающей свойства транзисторной структуры в линейном режиме работы и в режиме отсечки.



Рисунок 1.29 - Схема замещения биполярного транзистора (модель Эберса-Молла)

На рисунке 1.29 использованы обозначения: r э , r б , r к - сопротивления, соответственно, эмиттерной, базовой и коллекторной областей транзистора и контактов к ним; I б , I к - управляемые напряжением и п на входном переходе источники тока, отражающие передачу тока через транзистор; R эб - сопротивление утечки перехода база-эмиттер; R кб - сопротивление утечки перехода база-коллектор. Ток источника I б связан с напряжением на переходе соотношением

, (1.15)

где I БО - ток насыщения перехода база-эмиттер (обратный ток);

y к = (0,3 … 1,2) В - контактная разность потенциалов (зависит от типа полупроводникового материала);

т - эмпирический коэффициент.

Параллельно переходу база-эмиттер включены барьерная емкость С бэ и диффузионная емкость С дэ перехода. Величина С бэ определяется обратным напряжением на переходе и п и зависит от него по закону

, (1.16)

где С 0б - емкость перехода при и п = 0;

g = 0,3 ... 0,5 - коэффициент, зависящий от распределения примесей в области базы транзистора.

Диффузионная емкость является функцией тока I б , протекающего через переход, и определяется выражением

где А - коэффициент, зависящий от свойств перехода и его температуры.

Коллекторно-базовый переход моделируется аналогично, отличие состоит лишь в учете только барьерной емкости перехода

, (1.18)

так как при работе транзистора в линейном режиме и режиме отсечки коллекторного тока этот переход закрыт. Выражение для тока управляемого источника коллекторного тока , моделирующего усилительные свойства транзистора, имеет вид

, (1.19)

где b ст - статический коэффициент передачи тока базы транзистора в схеме с общим эмиттером.

Параметры модели Эберса-Молла могут быть получены либо расчетным путем на основе анализа физико-топологической модели транзистора, либо измерены экспериментально. Наиболее легко определяются статические параметры модели на постоянном токе.

Глобальная электрическая модель дискретного биполярного транзистора, учитывающая индуктивности и емкости его выводов, представлена на рисунке 1.30.

Рисунок 1.30 - Глобальная модель биполярного транзистора

Основные параметры биполярного транзистора

При определении переменных составляющих токов и напряжений (то есть при анализе электрических цепей на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рисунок 1.31, а ). Названия (физическая сущность) входных и выходных токов и напряжений такого четырехполюсника зависят от схемы включения транзистора.



а б

Рисунок 1.31 - Представление биполярного транзистора линейным четырехполюсником

Для схемы включения транзистора с общим эмиттером токи и напряжения четырехполюсника (рисунок 1.31, б ) соответствуют следующим токам и напряжениям транзистора:

- i 1 - переменная составляющая тока базы;

- u 1 - переменная составляющая напряжения между базой и эмиттером;

- i 2 - переменная составляющая тока коллектора;

- u 2 - переменная составляющая напряжения между коллектором и эмиттером.

Транзистор удобно описывать, используя так называемые h -параметры. При этом система уравнений четырехполюсника в матричном виде примет вид

. (1.20)

Коэффициенты h ij (то есть h -параметры) определяют опытным путем, используя поочередно режимы короткого замыкания и холостого хода на входе и выходе четырехполюсника.

Сущность h -параметров для схемы включения транзистора с ОЭ следующая:

- - входное сопротивление транзистора для переменного сигнала при коротком замыкании на выходе;

- - выходная проводимость транзистора при холостом ходе на входе;

- - коэффициент обратной связи по напряжению при холостом ходе на входе;

- - коэффициент передачи тока транзистора при коротком замыкании на выходе.

Используя схему замещения транзистора, можно найти зависимость h -параметров от параметров транзистора.

Вчастности, можно показать, что для схемы включения транзистора с ОЭ имеют место следующие соотношения:

В приведенных формулах использованы следующие параметры транзисторов:

- r б - омическое сопротивление тела базы. У реальных транзисторов достигает значений 100 … 200 Ом;

- r э - сопротивление р -п -перехода, значение которого зависит от режима работы транзистора и меняется в активном режиме в пределах долей - десятков Ом;

B - дифференциальный коэффициент передачи тока базы, определяемый из выражения

; (1.25)

Сопротивление коллекторной области, определяемое из выражения

, (1.26)

где r к - дифференциальное сопротивление коллекторного перехода (обычно находится в пределах доли - десятки МОм), определяемое из выражения

(1.27)

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой. Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа. Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры. Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной. На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

Рисунок 2.

Принцип действия биполярного транзистора

Любой p-n переход транзистора работает аналогично . При приложении к его полюсам разности потенциалов происходит его "смещение". Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается. Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.

Режимы работы

Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную .

Рисунок 3.

Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.

Инверсная схема , в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.

При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки , активный режим и режим насыщения .

Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.

Рисунок 4.

Режим отсечки

Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток. Для кремниевых транзисторов величина такого порога равна примерно 0,6 В. Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).

Таким образом, для режима отсечки необходимым условием являются тождества:

U БЭ <0,6 В

I Б =0

Активный режим

В активном режиме эмиттерный переход смещается в прямом направлении до момента отпирания (начала протекания тока) напряжением больше 0,6 В (для кремниевых транзисторов), а коллекторный – в обратном. Если база обладает проводимостью p-типа, происходит перенос (инжекция) электронов из эмиттера в базу, которые моментально распределяются в тонком слое базы и почти все достигают границы коллектора. Насыщение базы электронами приводит к значительному уменьшению размеров коллекторного перехода, через который электроны под действием отрицательного потенциала со стороны эмиттера и базы вытесняются в область коллектора, стекая через вывод коллектора, обуславливая тем самым ток коллектора. Очень тонкий слой базы ограничивает её максимальный ток, проходящий через очень малое сечение поперечного разреза в направлении вывода базы. Но эта малая толщина базы обуславливает её быстрое насыщение электронами. Площадь переходов имеет значительные размеры, что создаёт условия для протекания значительного тока эмиттер-коллектор, в десятки и сотни раз превышающий ток базы. Таким образом, пропуская через базу незначительные токи, мы можем создавать условия для прохождения через коллектор токов гораздо большей величины. Чем больше ток базы, тем больше её насыщение, и тем больше ток коллектора. Такой режим позволяет плавно управлять (регулировать) проводимостью коллекторного перехода соответствующим изменением (регулированием) тока базы. Это свойство активного режима транзистора используется в схемах различных усилителей.

В активном режиме ток эмиттера транзистора складывается из тока базы и коллектора:

I Э = I К + I Б

Ток коллектора можно выразить соотношением:

I К = α I Э

где α – коэффициент передачи тока эмиттера

Из приведённых равенств можно получить следующее:

где β – коэффициент усиления тока базы.

Режим насыщения

Предел увеличения тока базы до момента, когда ток коллектора остаётся неизменным определяет точку максимального насыщения базы электронами. Дальнейшее увеличение тока базы не будет изменять степень её насыщения, и ни как не будет влиять на ток коллектора, может привести к перегреву материала в области контакта базы и выходу транзистора из строя. В справочных данных на транзисторы могут быть указаны величины тока насыщения и максимально допустимого тока базы, либо напряжения насыщения эмиттер-база и максимально допустимого напряжения эмиттер-база. Эти пределы определяют режим насыщения транзистора при нормальных условиях его работы.

Режим отсечки и режим насыщения эффективны при работе транзисторов в качестве электронных ключей для коммутации сигнальных и силовых цепей.

Отличие в принципе работы транзисторов с различными структурами

Выше был рассмотрен случай работы транзистора n-p-n структуры. Транзисторы p-n-p структуры работают аналогично, но есть принципиальные отличия, которые следует знать. Полупроводниковый материал с акцепторной проводимостью p-типа обладает сравнительно низкой пропускной способностью электронов, так как основан на принципе перехода электрона от одного вакантного места (дырки) к другому. Когда все вакансии замещены электронами, то их движение возможно только по мере появления вакансий со стороны направления движения. При значительной протяжённости участка такого материала он будет обладать значительным электрическим сопротивлением, что приводит к большим проблемам при его использовании в качестве наиболее массивных коллекторе и эмиттере биполярных транзисторов p-n-p типа, чем при использовании в очень тонком слое базы транзисторов n-p-n типа. Полупроводниковый материал с донорной проводимостью n-типа обладает электрическими свойствами проводящих металлов, что делает его более выгодным для использования в качестве эмиттера и коллектора, как в транзисторах n-p-n типа.

Эта отличительная особенность различных структур биполярных транзисторов приводит к большим затруднениям при производстве пар компонент с различными структурами и аналогичными друг другу электрическими характеристиками. Если обратить внимание на справочные данные характеристик пар транзисторов, можно заметить, что при достижении одинаковых характеристик двух транзисторов различных типов, например КТ315А и КТ361А, несмотря на их одинаковую мощность коллектора (150 мВт) и примерно одинаковый коэффициент усиления по току (20-90), у них отличаются максимально допустимые токи коллектора, напряжения эмиттер-база и пр.

P.S. Данное описание принципа действия транзистора было интерпретировано с позиции Русской Теории , поэтому здесь нет описания действия электрических полей на вымышленные положительные и отрицательные заряды. Русская Физика даёт возможность пользоваться более простыми, понятными механическими моделями, наиболее приближенными к действительности, чем абстракции в виде электрических и магнитных полей, положительных и электрических зарядов, которые вероломно подсовывает нам традиционная школа. По этой причине не рекомендую без предварительного анализа и осмысления пользоваться изложенной теорией при подготовке к сдаче контрольных, курсовых и иных видов работ, Ваши преподаватели могут просто не принять инакомыслие, даже конкурентоспособное и вполне состоятельное с точки зрения здравого смысла и логики. Кроме того, с моей стороны это первая попытка описания работы полупроводникового прибора с позиции Русской Физики, может уточняться и дополняться в дальнейшем.



top