Сглаживающие фильтры в цепях питания радиоэлектронных схем. Сглаживающие фильтры

Сглаживающие фильтры в цепях питания радиоэлектронных схем. Сглаживающие фильтры

Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.

Основные схемы сглаживающих фильтров питания

1. Ёмкость 2. Г-образный 3. Т-образный 4. П-образный

Простейшим методом сглаживания пульсаций является применение фильтра в виде конденсатора достаточно большой ёмкости, шунтирующего нагрузку (сопротивление нагрузки). Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие: 1 / (ωС)

Во время действия синусоидального сигнала, когда напряжение на диоде выпрямителя прямое, через диод проходит ток, заряжающий конденсатор до напряжения, близкого к максимальному. Когда напряжение на выходе диодного выпрямителя оказывается меньше напряжения заряда конденсатора, конденсатор разряжается через нагрузку R н и создает на ней напряжение, которое постепенно снижается по мере разряда конденсатора через нагрузку. В каждый следующий полупериод конденсатор подзаряжается и его напряжение снова возрастает.

Чем больше емкость С и сопротивление нагрузки R н , тем медленнее разряжается конденсатор, тем меньше пульсации и тем ближе среднее значение выходного напряжения U ср к максимальному значению синусоиды U max . Если нагрузку вообще отключить, то в режиме холостого хода на конденсаторе получится постоянное напряжение равное U max , без всяких пульсаций.

Работа простейшего сглаживающего фильтра на конденсаторе в цепи однополупериодного выпрямителя поясняется рисунком и эпюрами:

Красным цветом показано напряжение на выходе выпрямителя без сглаживающего конденсатора, а синим – при его наличии.

Если пульсации должны быть малыми, или сопротивление нагрузки R н мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций одним конденсатором практически осуществить нельзя. Приходится использовать более сложный сглаживающий фильтр.

Работа сглаживающего Г-образного фильтра на конденсаторе и дросселе в цепи двухполупериодного мостового выпрямителя поясняется рисунком и эпюрами:

Как и в примере с однополупериодным выпрямителем, красным цветом показано напряжение на выходе выпрямителя без сглаживающих элементов (конденсатора и дросселя), а синим – при их наличии.

Логично следует, что чем больше ёмкости и индуктивности фильтров, и чем больше в нём реактивных элементов (сложнее фильтр), тем меньше коэффициент пульсаций такого выпрямителя.

В качестве сглаживающих конденсаторов используются электролитические конденсаторы. Чем больше ёмкость, тем лучше. Кроме того, для надёжности, конденсаторы должны быть рассчитаны на напряжение в полтора-два раза превышающее выходное напряжение диодного моста.

Определение выходного напряжения выпрямителя и выбор сглаживающего фильтра для блока вторичного питания

К описанному в статье, следует добавить важную информацию, используемую для конструирования источников (блоков) питания постоянного тока:

1. Любой p-n переход, любого полупроводникового прибора, в том числе диода имеет характеристику – падение напряжения на переходе. Это напряжение обычно указывают в справочниках. Для германиевых диодов оно может быть от 0,3 вольт до 0,5 вольт, а для кремниевых диодов – от 0,6 вольт до 1,5 вольт.

Это значит, что если мы возьмём трансформатор с выходным напряжением 6,3 вольта, выпрямим его однофазным двухполярным мостовым выпрямителем (диодным мостом) у которого на каждом диоде по справочнику падает по 1 вольту (U пр. = 1 В), то на выходе выпрямителя мы получим всего лишь 4,3 вольта. Напряжение в 2 вольта «потеряется» на 2-х диодах по пути прохождения тока. Начинающие радиолюбители обычно этого не учитывают, потому и недоумевают, почему на выходе маленькое напряжение.

2. Переменный электрический ток измеряется приборами, которые, как правило, показывают его среднее значение, а не максимальное. Максимальное значение переменного напряжения это – значение электрического напряжения соответствующее его максимальному значению синусоиды.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению: U ср = U max / π = 0,318 * U max

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению: U ср = 2 U max / π = 0,636 * U max

Значение среднего напряжения - 0,636 за счёт особенностей конструкции измерительных приборов округляется и принимается равной 0,7.

3. Исходя из изложенного выше, можно сделать вывод, который справедлив в том случае, когда нагрузка на блок питания маленькая. Обратите внимание на рисунки ниже.

Выходное напряжение выпрямителей с фильтром питания:

а) с большой нагрузкой:

б) с маленькой нагрузкой:

Эти рисунки поясняют, что при малой нагрузке выходное напряжение выпрямителя с фильтром питания равно максимальной амплитуде синусоиды поступающей на выпрямитель, за вычетом падения напряжения на диодах.

Пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания

Рассмотрим случай со средним переменным напряжением на выходе трансформатора, измеренным мультиметром равным 6,3 вольта , и нагрузкой (сопротивлением нагрузки) равной 200 Ом .

Выходное напряжение c мостового выпрямителя будет определено следующим образом:

Максимальное напряжение на выходе трансформатора:

U max = U изм / 0,7 = 6,3в / 0,7 = 9 вольт

Максимальное выходное напряжение на выходе выпрямителя:

U вых. = U max – U VD1 – U VD2 = 9 – 1 – 1 = 7 вольт

Емкость сглаживающего конденсатора выбираем из условия:

1 / (2*π*f*С) н

, откуда 1 / (2*π*f *R н )

Подставим данные:

1/(2*3,14*50*200) = 1,59*10 -5 (Фарад) = 15,9 мкФ

Учитывая условие, при котором емкость конденсатора должна быть намного больше полученному по приведенному условию, выбираем конденсатор ёмкостью более чем в пять раз больше расчётного значения - 100 мкФ*16 вольт .

Схема, состоящая из трансформатора, выпрямителя и сглаживающего фильтра является источником нестабилизированного питания. От таких источников можно питать любые устройства, потребляющие слабый ток, не критичные к наличию пульсаций и нестабильности питающего напряжения. Для максимального подавления пульсаций и стабилизации питающего напряжения применяют

Приведена принципиальная схема простого сетевого фильтра, который поможет защитить от помех радиоэлектронную аппаратуру с питанием от сети переменного тока.

Фильтр состоит из двух конденсаторов и дросселя. Схема очень простая, но тем не менее ее работоспособность во многом зависит от правильности изготовления дросселя 1-2-3-4.

Рис. 1. Схема простейшего сетевого фильтра для защиты от помех.

Рис. 2. Ферритовые кольца для изготовления дросселя.

Обмотки 1-2, 3-4 дросселя содержат по 15 витков провода МГТФ (провод во фторопластовой изоляции). Можно применить и обычный эмалированный провод диаметром 0,25 - 0,35мм.

Рис. 3. Как намотать дроссель для сетевого фильтра.

Берем ферритовое кольцо кольцо с диаметром примерно 20 мм, мотаем на него две обмотки в разные стороны и в разном направлении до встречи на другой половине кольца. Принцип намотки показан на рисунке 3. Таким образом обмотки получаются намотаны в разную сторону и каждая на своей половинке ферритового кольца.

Конденсаторы в схеме должны быть рассчитаны на напряжение 400В и больше.

Более совершення схема сетевого фильтра представлена на рисунке 2, здесь предполагается что вместе с питанием 220В у нас есть еще провод заземления. Также присутствует включатель S1 и предохранитель F1, которые служат для включения-отключения питания и защиты от перегрузки по току в нагрузке.


Рис. 2. Схема более совершенного самодельного сетевого фильтра.

Дроссель изготавливаем по такому же принципу, как и для схемы на рисунке 1. Диаметр провода для дросселя, а также ток для предохранителя и мощность переключателя нужно выбрать исходя из потребляемой мощности в нагрузке.

Изготовив простой фильтр на основе дросселя и конденсаторов можно значительно снизить количество помех.Если же нужна более хорошая фильтрация то придется обратиться к более сложным схемам фильтров с несколькими звеньями фильтрации.

Напряжение на выходе выпрямителя не является строго постоянным, оно пульсирует, т. е. изменяется с частотой 50 или 100 гц в каких-то пределах, сохраняя свой знак. Такое пульсирующее напряжение можно представить, как сумму двух напряжений: постоянного и переменного. Отношение амплитуды переменной составляющей к постоянной составляющей называется коэффициентом пульсации р (выражается в процентах).

При питании пульсирующим напряжением приемника или усилителя НЧ в громкоговорителе или телефоне на выходе устройства будет прослушиваться гудение низкого тона - фон переменного тока. Чтобы фон был мало заметен, коэффициент пульсации питающего напряжения для различных каскадов приемников и усилителей не должен превышать значений, указанных в процентах ниже:

  • Выходной каскад высокочувствителього УНЧ - 0,001-0,002
  • Предварительный каскад УНЧ, детектор - 0,01-0,05
  • УВЧ, УПЧ, преобразователь частоты - 0,02-0,1
  • Выходной каскад УНЧ однотактный - 0,1-0,5
  • Выходной каскад УНЧ двухтактный - 0,5-2,0

Так как коэффициент пульсации напряжения, снимаемого с конденсатора выпрямителя, имеет значительно большую величину, между выпрямителем и питаемым устройством включают сглаживающий фильтр, включающий реактивные элементы, сопротивление которых постоянному и переменному току различно. В качестве таких элементов могут использоваться дроссели НЧ, конденсаторы большой емкости, а также лампы и транзисторы, включенные по специальной схеме.

Сглаживающие свойства фильтра характеризуются коэффициентом сглаживания Kс, показывающим, во сколько раз коэффициент пульсаций на выходе фильтра меньше, чем на его входе: Kc=Po/P

Коэффициент пульсации на входе фильтра Po определяется при расчете выпрямителя.

I. Г-образный реостатно-емкостный фильтр (рис. 1) Фильтр состоит из резистора R1 и конденсатора Сф. Конденсатор C1, показанный на схеме штрихами, относится к выпрямителю.

Для переменной составляющей выпрямленного тока фильтр является делителем напряжения, уменьшающим переменное напряжение тем в большей степени, чем больше сопротивление резистора R1 и емкость конденсатора Сф. Для постоянного тока сопротивление конденсатора велико, поэтому для постоянной составляющей фильтр является сопротивлением,включенным последовательно с нагрузкой.

Фильтр этого типа наиболее прост и дешев, но для увеличения коэффициента сглаживания Кс приходится увеличивать сопротивление резистора R1, при этом возрастают потери постоянного напряжения и мощности на резисторе R1 и уменьшается к.п.д. фильтра. Поэтому RC-фильтр применяют в простых конструкциях, где к.п.д. может быть невелик, при малых выпрямленных токах (до 20 мА) и в случаях, когда допустимо большое падение напряжения в фильтре.

Произведение RC для однополупериодного выпрямителя определяют по формуле: R1 (Ом) - Cф (мкф) = 3000 Кс.

Для двухполупериодного по формуле: R1 (Ом) x Сф (мкФ)= 1500 Кс.

Сопротивление резистора R1 определяют по наибольшему допустимому падению напряжения на нем. Мощность, выделяющаяся на резисторе, равна: P (Вт)=R1(Ом)Io 2 (mA)/10 6

Если коэффициент сглаживания фильтра недостаточен, применяют двухзвенный фильтр (рис. 2), Так как при последовательном включении звеньев общий коэффициент сглаживания равен произведению коэффициентов сглаживания отдельных звеньев, формулы примут вид: для однополупериодного выпрямителя: R1 (Ом) x Сф (мкФ) = 3000 √ Кс

для двухполупериодного выпрямителя: R1 (Ом) x Сф (мкФ) = 1500 √ Кс при R1=R2 и Сф1=Сф2=Сф.

II. (рис. 3)

Так как сопротивление дросселя НЧ постоянному току мало, падение напряжения на нем незначительно и к.п.д. фильтра составляет 80-90%.

Для повышения коэффициента сглаживания может применяться последовательное включение двух звеньев (рис. 4), например, для питания микрофонных усилителей.

Индуктивность дросселя и емкость конденсатора фильтра определяется по формулам: при однополупериодном выпрямителе и одном звене:

L (гн) x Сф (мкФ)=10 Кс

при двух звеньях:

L (гн) x С ф (мкф) = 10 √ Кс

при двухполупериодном выпрямлении и одном звене:

L (гн) x С ф (мкф) = 2.5 Кс

с двумя звеньями:

L (гн) x С ф (мкф) = 2.5 √ Кс

где L - индуктивность дросселей Др 1 и Др2.

lll. (рис. 5)

Сглаживающее действие фильтра можно повысить, если параллельно дросселю включить бумажный конденсатор С2, образующий с дросселем параллельный контур, настроенный на частоту пульсации 50 или 100 гц. Емкость конденсатора подбирается опытным путем по наименьшему уровню фона.

При протекании пульсирующего тока через резистор R2 (рис. 6) напряжение на резисторе также пульсирует. Переменная составляющая этого напряжения через конденсатор С2 оказывается приложенной между эмиттером и базой транзистора T1. В моменты повышения напряжения на входе фильтра на базу транзистора подается положительное напряжение, внутреннее сопротивление его увеличивается, в моменты уменьшения напряжения сопротивление транзистора уменьшается. Благодаря этому напряжение на нагрузке пульсирует в значительно меньшей степени, чем до фильтра.

Сопротивление резистора R1 должно быть таким, чтобы рабочая точка транзистора находилась в середине прямолинейного участка характеристики. Его можно подобрать экспериментально при налаживании фильтра. Сопротивление резистора R2 во избежании большого падения напряжения на нем берется порядка 80-100 ом.

На рис. 7 показана другая схема включения транзистора. Хотя коэффициент сглаживания фильтра, собранного по этой схеме, ниже, но к.п.д. его выше, чем у фильтра, собранного по схеме рис. 6. Резистор R1 подбирается при налаживании фильтра.

Если вместо конденсатора С2 включить кремниевый стабилитрон типа Д808 - Д811, напряжение на выходе фильтра будет не только сглажено, но и стабилизировано.

Фильтрация помех по питанию является важным, хотя и не единственным средством повышения устойчивости работы МК. Это, как правило, первая ступень, которую надо обязательно пройти до конца. Обычно используют пассивные RC- и LC-фильтры, гораздо реже — активные транзисторные фильтры.

Если нельзя устранить причину помехи (с чего, по идее, и надо начинать анализ), то пытаются устранить следствие, т.е. ставят заградительные фильтры (Рис. 6.22, а…м). Окончательный вердикт об эффективности того или иного технического решения может дать лишь практика или детальное компьютерное моделирование реальных условий работы. Стоит только отметить, что МК и присоединяемые к нему импульсные узлы, сами могут являться довольно серьёзным источником помех. Следовательно, вторая функция заградительных фильтров заключается в уменьшении уровня не только «входящих», но и «исходящих» помех.

Рис. 6.22. Схемы фильтров по питанию (начало):

а) в непосредственной близости от выводов стабилизатора напряжения AI размещаются два конденсатора: электролитический C1 большой ёмкости для фильтрации НЧ-помех и керамический С2 малой ёмкости для фильтрации ВЧ-помех;

б) аналогично Рис. 6.22, а, но с LC-фильтром. Как следствие, «скругляется» форма пульсаций выходного напряжения;

в) аналогично Рис. 6.22, а, но с тремя конденсаторами разной ёмкости, каждый из которых действует в своей частотной области. Экспериментально следует подобрать оптимальные места установки конденсаторов на печатной плате, что позволяет заметно снизить амплитуду пульсаций;

г) разделение двух «пятивольтовых» каналов питания через LC-фильтры. Один из каналов может обслуживать цифровую, а другой канал — аналоговую часть устройства;

Рис. 6.22. Схемы фильтров по питанию (продолжение):

д) снижение сетевых пульсаций и уровня шума в цепи питания методом фазовой компенсации. Транзистор VT1 усиливает переменную составляющую пульсаций, инвертирует её и частично компенсирует в точке соединения резисторов R2, R4

е) аналогично Рис. 6.22, д, но на составных транзисторах VTI, VT2, что актуально для больших токов нагрузки;

ж) транзисторный фильтр на основе эмиттерного повторителя VTI, который ставится после диодного выпрямителя для снижения пульсаций сетевой частоты 50/100 Гц;

з) трансформатор 77 снижает уровень синфазных помех. Если это не помогает, то можно изменить полярность включения одной (любой) обмотки трансформатора 77 на противоположную (снижение уровня противофазных помех);

и) аналогично Рис. 6.22, з, но для бортовой сети автомобиля. Трансформатор Т1 (точнее, двойной дроссель) разделяет «электрическую массу» шасси автомобиля и общий провод устройства:

Рис. 6.22. Схемы фильтров по питанию (окончание):

к) комплексная фильтрация и защита гальванически изолированного DC/DC-преобразова-теля напряжения А1 в условиях сильных промышленных помех. Резистор RJ ограничивает ток через сапрессор VD1 при всплесках напряжения. Стабилитрон VD2 ограничивает в аварийной ситуации выходное напряжение на уровне +5.6 В, но он может выйти из строя при длительном протекании большого тока;

л) многоступенчатая система снижения ВЧ-помех на выходе +£’11ИТ. Фильтруются помехи как излучаемые в сеть 220 В, так и принимаемые из нее. Первая ступень заграждения — C1, 77, С2, вторая ступень — СЗ…С6, третья ступень — RI, С7;

м) сеть 220 В подключается к трансформатору Т1, а сетевой источник питания для МК подключается к трансформатору Т2. Связка элементов Т1, C1, Т2 образует LC-фильтр, который уменьшает импульсные помехи, возникающие при включении мощных бытовых приборов, например, холодильника, утюга или СВЧ-печи. Схема обладает стабилизирующим свойством — на входе переменное напряжение 190…250 В, а на выходе 216…228 В. Расчётные мощности трансформаторов Т1, Т2 должны быть больше мощности нагрузки. Если применяются трансформаторы с коэффициентом передачи 1:1, то конденсатор C1 ставят на напряжение 630 В.

В последние годы ваш HiFi или даже High-End аудио комплекс всё меньше радует детальностью, сочностью и прозрачностью звучания? Вы подумываете обновить всю систему? Или вы уже подыскиваете качественный сетевой фильтр ? Если последнее - вы на верном пути 😉

Посчитаем?

В этом веке количество источников электромагнитных помех в наших домах растёт по экспоненте. Оглядитесь, попробуйте посчитать, сколько на вид безобидных лёгких и маленьких зарядных устройств, экономичных ламп, "электронных трансформаторов" для галогенок, компьютеров, принтеров, и прочей электроники с питанием от сети и/или всевозможными "зарядниками" пришло в ваш дом за последнее десятилетие? Пальцев не хватило, даже вместе с ногами, женой и... то-то! 🙂

Сегодня пожалуй 95% источников сетевого питания построены на базе высокочастотного преобразователя и не используют старые громоздкие и тяжёлые, гудящие трансформаторы на 50 (60) Герц. Ура, партия зелёных торжествует: большинство таких преобразователей весьма экономичны, компактны и... каждый такой импульсный блок питания а ) свистит на частоте преобразования и гармониках и б ) создаёт броски зарядного тока во входном выпрямителе (весьма широкополосная помеха - и прямиком в сеть).

В по-настоящему качественных (и дорогих) импульсных источниках питания с помехами борются весьма успешно, но всё равно недостаточно, чтобы весь производимый ими электромусор остался незаметным для чувствительных ушей меломана. Да что там меломаны... У нас в доме старый добрый 39-мегагерцовый радио-телефон. Постепенно он начал гудеть и жужжать так, что я серьёзно собирался сменить аппарат. Но пользуемся мы им относительно редко и проблема однажды решилась сама собою, когда я в погоне за красивым звуком повырубал к чертям все импульсные блоки питания вкупе с компьютерами в доме. После того эксперимента, кстати, и появились у нас вот эти .

Так что же покупить?

В этой статье я не подскажу, какой сетевой фильтр надо покупать. Причины две: за разумные деньги я не встречал адекватных фильтров; а те фильтры, что я мог бы порекомендовать - стоили совершенно несообразно, да и места занимали много больше, чем выполняемая ими функция того требует. Тем не менее решение существует: для умелых рук - собирать фильтры самому, и я постараюсь разъяснить его работу настолько, что любой, кто дружен с паяльником, сможет снабдить свою аппаратуру адекватной защитой от электромагнитных помех, проникающих из питающей сети. Если же вы не имеете возможности, либо желания дышать канифолью - покажите статью товарищу, который сможет вам помочь.

Грамотные производители должны были всё предусмотреть!

Фиг-вам! (изба такая индейская (с) кот Матроскин)

Открываем CD-проигрыватель, купленный в своё время за шесть сотен "зелёных". И что мы видим: рудиментарный сетевой фильтр тут имеется, но увы, лишь нарисованный шелкографией на плате, на дросселе и конденсаторах сэкономили. Вполне допускаю, что в их комнатах прослушивания, с идеальной фильтрацией питания, фильтр тот был и не нужен - не услышали "гуру" разницы от отсутствия фильтра. Ну и внесли "рацуху" - пошёл аппарат в массы голенький и беззащитный супротиву нового поколения электронных домов...

За работу!

В принципе, качественные фильтры промышленность выпускает. Только стОят они опять же дороговато. Этакие полностью экранированные коробочки со схемкой на боку. Катушечки там, конденсаторчики. Давайте же разберёмся, что там для чего, и соберём сами из доступных деталюх. Кстати, в пику аудиоманьякам я утверждаю, что грамотный сетевой фильтр в устройстве, собранный из качественных обычных (не аудиофильских) компонентов - гораздо эффективнее и "звучит" лучше, нежели любые самые эзотерические кабели питания, а так же и большинство "аудиофильских" же фильтров питания. Спорим? 😉

Скажи мне, кто твой враг

1) Дифференциальное напряжение помехи. Это такой "вредный" сигнал, который приходит вместе с "полезным" напряжением питания (или сигналом), его измеряют между двумя соединительными проводниками, "горячим" и "общим" проводами, или проще говоря - между двумя шинами питания.

2) Синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником. Особенность этой помехи в том, что она будет идентична на обоих проводах питания, т.е. в отличие от дифференциальной помехи её не поймать между проводами и она просачивается внутрь в обход обычных фильтров.

Блокировочный конденсатор


Конденсатор шунтирует дифференциальные ВЧ помехи и не пускает их дальше в аппарат. Надо не забыть разрядить его при выключении аппарата, а то взявшись нечаянно за вилку можно получить весьма ощутимую "мотивацию". Для этого ставим резистор, мирно греющийся в нормальном режиме работы. Ох не водить мне дружбы с "зелёными"...

Дроссель

Индуктивность (обыкновенный небольшой дроссель) формирует уже Г-образный LP фильтр с совместно с конденсатором. Конкретная частота среза фильтра нас не очень интересует. Дроссель потолще (лишь бы был рассчитан на _постоянный_ ток в несколько раз выше тока, потребляемого аппаратом), конденсатор побольше на напряжение не менее 310 вольт - и все довольны.

Синфазный трансформатор


Обмотки в таком трансформаторе идентичны и включены встречно, таким образом он беспрепятственно пропускает всё, что приходит как разница потенциалов между L и N. Иначе можно объяснить так: нормальный ток нагрузки создаёт встречные идентичные поля в сердечнике, которые взаимно компенсируются. Тогда зачем это всё - спросите вы?

Сердечник такого трансформатора остаётся неподмагниченным основной нагрузкой. Если же представить себе провода питания L и N вместе как один провод - то мы имеем немалую индуктивность на пути уже синфазной помехи, т.е. всего того, что наводится на обоих проводах одновременно. Провода же те, будь то обычный кабель питания за доллар, или экзотическое аудиофильское чудо - суть антенна, принимающая и станцию "Маяк", и всё, что излучают домашние электронные вонючки. Внутри же аудио агрегата нам и синфазная помеха ни к чему: через емкостную связь она может проникать в кишочки наших любимцев весьма агрессивно.

Два маленьких компаньона


Два маленьких конденсатора в компанию синфазному трансформатору. Они закорачивают на защитное заземление именно синфазную помеху и создают уже вкупе с синфазным трансформатором тоже своего рода Г-образный фильтр для синфазной помехи, не пускают её дальше в аппарат. Без них синфазная помеха, пусть и встретившая на своём пути немалое сопротивление нашего трансформатора - всё равно пойдёт искать свою жертву внутрь аппарата.

Антизвон


Антизвонная цепочка, или RC-цепь Цобеля. Несколько мистический зверёк, но очень полезный. Тут совместно с первичной обмоткой трансформатора в аппарате мы формируем колебательный контур с низкой добротностью, чтобы "поймать" то, что "выскочит" из первички при отключении питания. Искрогаситель. Защита остального фильтра и самого трансформатора от ЭДС самоиндукции при отключении в неудачный момент (при большом токе через первичку). Он так же вносит свою лепту в перевод ВЧ помех в тепло.

Не было бы конденсатора - такой низкоомный резистор просто взорвался бы от напряжения сети. Не было бы резистора - получили бы относительно высокодобротный контур совместно с первичкой и/или дросселем фильтра.

Другой взгляд: привносим чисто резистивную и весьма низкоомную составляющую импеданса нагрузки на ВЧ... Кто может объяснить лучше - милости прошу, помещу "в книжку" с сохранением авторства 😉

#ground_loop

Разрываем контур заземления


Резистор в параллель со встречно включенными диодами. В другой версии это мог бы быть дроссель. Включено это дело между защитным заземлением и корпусом прибора. Зачем, спросите вы - это, вроде, к фильтрации помех никакого отношения не имеет? Давайте разбираться.

Встречно включенные диоды успешно закоротят любую сильноточную утечку внутри корпуса прибора (коротыш какой, пробой) на защитное заземление. Тем самым мы соблюдаем требования техники безопасности: в случае аварии на корпусе прибора не должно появится опасного для жизни и здоровья человека напряжения. При этом диоды "разрывают" цепь для небольших напряжений.

Резистор создаёт путь для небольших токов. Если бы его не было, а внутренности прибора неплохо отвязаны от земли, то даже небольшие утечки создавали бы избыточный размах напряжения на корпусе относительно земли, и через емкостные связи это всё проникало бы в прибор.

Так для чего же всё-таки "отвязывать" защитную землю от корпуса? Дело в том, что на защитном заземлении могут наводиться напряжения: например той самой синфазной помехой, что мы отфильтровываем. Так же, увы, нередко встречается такая разводка сети, когда защитное заземление одновременно является и возвратным проводом для собственно напряжения сети. В этом случае даже на небольшом сопротивлении проводки немалый ток потребления создаёт ощутимое падение напряжения. Все эти факторы могут "разогнать" в нормальных условиях до десятков и даже сотен милливольт разницы потенциалов между защитными заземлениями разных агрегатов. Теперь, если мы передаём аудио-сигнал через соединения, заведённые одним проводом на корпус (RCA разъёмы "колокольчики", к сожалению так популярные в бытовом HiFi), то эта самая разность потенциалов между корпусами приборов будет напрямую замешана в сигнал.

Итого, отвязывая корпус прибора (а в большинстве случаев это значит - и сигнальную землю оного) от защитного заземления, мы тем самым ощутимо уменьшаем замешивание любых "чудачеств", что могут случиться в розетке - прямиком в сигнал. Конечно же, уважающий себя любитель качественного звуковоспроизведения будет использовать исключительно балансные соединения, иммунные к синфазной помехе. Только, увы, у меня ещё не все аппараты соединены исключительно балансными кабелями. А как с этим дело обстоит у вас, дорогой читатель? 😉

Собираем


Выключатель питания пристроен по принципу - где меньше искра будет. В остальном фильтр не сильно отличается от того, что ставят в дорогих компьютерных блоках питания. Кстати, оттуда же можно и детальками разжиться.


Тот фирменный аппарат, что я упомянул вначале статьи, тоже получил свою дозу фильтрации, подробности .

А ещё лучше - можно?

Можно! Экстремалы включают "встречно" огромные трансформаторы и фильтруют всё в низковольтной части. Результат несколько лучше, бюджет - на порядки выше.

Или возможно, вы захотите подарить своему лучшему другу - меломану недорогой подарок, за который он будет вам искренне благодарен? 😉 Взвесьте все за и против, и примите верное решение! .

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

154 thoughts on “Сетевой фильтр для аудио — своими руками



top