Схемы преобразователей напряжения своими руками

 Схемы преобразователей напряжения своими руками

Как уже говорил - большим недостатком является отсутствие какой-либо схемы подключения на упаковке. Всё бы было ничего, если было только два провода - красный и чёрный, более менее тогда понятно: красный на плюс, чёрный на минус. Но присутствует ещё жёлтый провод, который вводит в заблуждение.

После недолгих поисков в тырнете, удалось найти аналогичный блок питания с разрисованной схемой. Фишка оказалась в том, что жёлтый провод является управляющим, который включает/выключает преобразователь. Для того, чтобы DC/DC конвертер заработал, на жёлтый провод надо подать +24 вольта. Самым простым способом является объединение красного и жёлтого проводов и подача на них напряжения. Более извращённым способом является управление блоком питания с помощью слаботочного переключателя S1 (см схему ниже). Таким образом, красный провод должен быть постоянно подключен к плюсовой клеммой аккумулятора (ток там может протекать приличный). Насчёт жёлтого провода на выходе не совсем уверен, обычно он называется REM, т.е. remote - удалённое управление. Как я понимаю он также служит для перевода блока питания в дежурный режим (т.е. его отключение). Я нарисовал на схеме способ подключения жёлтого провода на выходе, но я такое поключение не проверял . Если будет возможность - проверю и отпишусь.

В общем, отписываюсь: всё что написано в предыдущем абзаце - наглая ложь! В)
В ходе экспериментов было установлено, что жёлтый провод является силовым как по входу, так и по выходу. К сожалению (а может и к счастью) опыты закончились как обычно - дымом и запахом сгоревшей изоляции... во-первых, после подключения на входе красного+жёлтого провода, а на выходе только красного и нагрузки 21 Вт (лампочка 12 В) напряжение на выходе просело до 9 В. Мне это сильно не понравилось и я решил посмотреть на незадействованный жёлтый провод на выходе. На нём оказалось напряжение +12В и я подумал, что это вход обратной связи. Сделав такое умозаключение, я подключил его к красному проводу на выходе и всё вроде бы заработало - напряжение стало опять 11.9 В и всё было прекрасно.
После почти часовой нагрузки на три лампочки 21Вт 12В корпус блока был сильно горячим (около 60 градусов). В этот момент было записано видео...

После этого я решил продемонстрировать папе (для него покупался преобразователь), что жёлтый провод (на стороне 12В) является измерительным для обратной связи: я рассчитывал, что когда отключу его от красного напряжение опять снизится где-то до 6 вольт или даже менее. После отключения жёлтого провода (вся нагрузка осталась на красном проводе) раздался щелчок, пошёл дым и всё погасло...

Вскрытие принесло мне озарение: я узнал, как устроен этот преобразователь, что означают те или иные провода.

NEW: Как и обещал, выкладываю фотки внутренностей. Наконец-то дошли руки. Я уже говорил, о том, что сгорел слаботочный преобразователь, это хорошо видно на вот этой фотографии.

А тут хорошо видно основной силовой преобразователь, точнее его половину:



Итак, блок питания состоит из 3х частей: первая и вторая часть собрана на микросхемах NJM2367 фирмы New Japan Radio Co (похоже китайская, хоть и называется японской) по типовой схеме включения. Обе эти части включены параллельно по входу и выходу.
Сама микросхема представляет из себя DC/DC конвертер с максимальным входным напряжением 40 В, номинальным током 5.5 А (максимум 6,5 А), тепловой защитой и защитой от превышения тока. Выполнена в стандартном корпусе ТО-220 с пятью выводами. Вот её даташит: скачать с depositfiles.ru .
Выдержки из даташита, кому качать лень:
1) Корпус и цоколевка

2) Внутреннее устройство



3) Типовая схема включения микросхемы



Итак, эти две микросхемы, включенные параллельно, дают нам в номинале 2*5.5 = 11А.
Чтобы добиться заявленных 15А конструкторы сделали ещё один стабилизатор на широко распространённой микросхеме MC34063A в типовой схеме включения. Как раз этот стабилизатор подключен по входу и выходу на красный провод (какая-то кривая китайская логика) и именно он сгорел у меня, когда я отключил жёлтый провод.
Я попробовал использовать только мощный преобразователь (тот, что собран на 2х NJM2367) и он нормально работал. Я откусил красный провод на входе и выходе и у меня получилась такая схема подключения.

На рисунке ниже приведена схема подключения DC/DC конвертера с использованием трёх проводов: красного, чёрного и жёлтого. Убрал предыдущую схему (которая была в корне неправильной). Как только нарисую правильную - выложу. На словах получается так: если нам нужен один мощный преобразователь 24 вольта в 12 вольт - берём и объединяем на входе красный с жёлтым провода и также на выходе красный с жёлтым провода. На эти объединённые на входе провода подаём +24 Вольта, а на чёрный подаём минус. Кстати, чёрный провод общий для входа и для выхода, так что в принципе можно сэкономить на одном проводе, хотя это будет и не совсем правильно.

Если же нам нужно два стабилизатора (например, один дежурный), то используем их раздельно - жёлтый провод - это "плюс" силового преобразователя, красный провод - "плюс" дежурного (слаботочного) преобразователя. Я думаю, максимальный ток слаботочного преобразователя где-то около 2 А.
Допилил более правильную схему подключения (с работающим дежурным стабилизатором):



Для чего нужен такой преобразователь? Дело в том, что у большегрузных автомобилей напряжение в бортовой сети 24, а точнее 28 вольт, когда работает двигатель. А магнитолы или мини телевизоры работают от 12 вольт. Так вот водители конечно находят выход из положения, цепляя магнитолу к одному аккумулятору. Работать то она конечно будет, только вот аккумуляторы разряжаются неравномерно. При работающем двигателе еще куда не шло. А вот на стоянке можно усадить один аккумулятор так, что не хватит на запуск двигателя. И второй, заряженный аккумулятор не исправит положение. По сему вывод - надо включать в работу оба аккумулятора. Вот для этого и предназначена данная конструкция, когда-то мною разработанная и опробованная.

Теперь о конструкции. В преобразователе применены детали имевшиеся в наличии на тот момент. Транзисторы и в корпусе ТО-3 могут рассеивать мощность 100ватт с теплоотводом. То есть теоретически преобразователь можно нагружать током 14 ампер. Но это теоретически, а на практике все будет определяться размерами радиатора. Слишком большой тоже не применишь, конструкция размером с магнитолу.

Опытным путем было установлено, что длительно преобразователь может работать при токе 3 - 5 ампер. Кратковременно - до 8 ампер. Про радиатор более точно сказать не могу. Скажу только, что транзисторы можно разместить на одном радиаторе без изолирования. Коллекторами то они так и так связаны. Можно и на разных радиаторах. Главное исключить возможность дотронутся радиатором до корпуса автомобиля или магнитолы. А лучше все таки изолировать транзисторы, и не парится.

Теперь о защитах. Магнитола все таки вещь дорогая, а по сему нужно защитить ее от повышения напряжения на выходе преобразователя. В данном случае я применил три защиты. Две следят за пробоем транзисторов, как первого так и второго. А третья срабатывает при превышении установленного тока.

Срабатывание любой из защит приводит к включению реле К1 и отключению нагрузки от преобразователя. При этом загорается светодиод, сигнализируя о неисправности.

Теперь о налаживании. Настраивать защиты следует до установки в схему транзисторов VT2, VT3 и микросхем стабилизаторов. Сначала подаем от регулируемого источника напряжение 22 - 23 вольта на верхний(по схеме) вывод резистора R10. Подбирая резистор R11, добиваемся срабатывания защиты. По тому же принципу настраиваем защиту от пробоя VT3. Подаем 15 вольт на R13 и подбираем резистор R14. Далее впаиваем оставшиеся детали и проверяем что получилось. Возможно придется подобрать резистор R8. Напряжение на коллекторах транзисторов VT2, VT3 должно быть 20 вольт.

В последнюю очередь настраиваем защиту по току. Тут регулировать можно как резистором R6, так и резистором R5. При данных номиналах у меня защита срабатывала при токе около 6 ампер. Резистор R5 можно составить из двух параллельно резисторов С5-16МВ-2Вт номиналом 0.22 ома. Конденсатор С1 увеличивает время срабатывания защиты, что бы не реагировала на заряд электролитических конденсаторов в магнитоле. Реле К1 любое, малогабаритное на 24 вольта. Хоть реле стартера. Возможно в импортных автомобилях уже на заводе что нибудь такое устанавливают, не знаю. На наших Мазах и Камазах уж точно ничего такого нет.


Устройство содержит задающий генератор на микросхеме, стабилизатор, разрядные полевые транзисторы VT1-VT4, мощные транзисторы VT5 и VT6, коммутирующие ток в первичной обмотке трансформатора Т1, узел защиты по току на реле К1, узел стабилизации



В основном, питание различных устройств и приборов осуществляется линейным стабилизатором. Это обусловлено привычкой и простотой схемы. Но при таком способе существует один серьезный недостаток нагрев и как следствие более высокое энергопотреблении. Хорошим выходом из данной ситуации является использование достаточно распространенных сегодня специализированных микросхем который осуществляют преобразование номинала постоянного напряжения в обоих направлениях.

Отключение электроэнергии в нашем доме происходит часто? Выход есть, если у Вас имеется автомобильный аккумулятор и переносной телевизор типа "Электроника" с питанием 12 В

Радиолюбители очень часто интересуются схемами питания выполненными по принципу умножения напряжения. Ведь схемы умножителей напряжения позволяют значительно уменьшить вес и габариты аппаратуры. Для понимания физического процесса работы умножителя напряжения, рассмотрим основные принципы построения таких устройств. Все эти устройства можно условно разделить на симметричные и несимметричные. Несимметричные конструкции подразделяются на два типа: первого рода и второго рода

Его можно использовать для запитки фотоэлектронного умножителя, но от него можно запитать счетчик Гейгера и другие высоковольтные приборы.

Описываемый преобразователь в бытовых условиях может быть и не нужен, но для промышленных предприятий с трехфазными потребителями тока может оказаться очень полезным, не говоря уже о тех местах, где нет трехфазных линий электропередач, но существует необходимость применения трехфазного электрооборудования

Данные схемотехнические решения позволяют получить повышенный уровень напряжение для зарядки конденсаторов или питания маломощных высоковольтных узлов. Такой DC-DC преобразователь напряжения можно применить для сборки маломощных гаусс-пушек. Эта конструкция не имеет импульсного трансформатора, что резко снижает размеры печатной платы и упрощает устройство.

Давно хотел спаять преобразователь напряжения 1,5 - 9 вольт из аккумулятора ААА для цифровых мультиметров. В роли корпуса для самодельного преобразователя я выбрал корпус от старой батарейки типа «Крона».

Хотите подключить дрель, болгарку или микроволновку к бортовой сети автомобиля. Не вопрос, предлагаю вашему вниманию несколько простых схем. Хотя есть еще один более простой вариант - взять готовый преобразователь из любого старого компьютерного бесперебойника с дохлой батареей.

Убрав импульсный трансформатор, схема преобразователя напряжения существенно упрощается, снижаются габариты и вес. Но с другой стороны при бестрансформаторном способе нет гальванической развязки, а для реализации двух полярного питания потребуется собрать две схемы.

Низковольтный преобразователь напряжения

Простой преобразователь напряжения для питания радиостанции от бортовой сети с напряжением 24В можно собрать довольно быстро. Схема легко повторяема и не содержит дефицитных и дорогих радиодеталей.

Схема представляет собой линейный стабилизатор напряжения собранный на LM7815. Для увеличения тока стабилизации на радиаторе устанавливается составной транзистор TIP142. Диоды VD1,2 установлены для защиты от не правильного подключения полярности на входе устройства. VD3,4 – защищают устройство при подаче 24V напряжения на выход устройства.

Печатная плата собрана на одностороннем фольгированном текстолите.

Детали устанавливаются на плату со стороны проводников. Транзистор VT1 устанавливается на теплоотводящий радиатор. Я использовал радиатор от старого преобразователя напряжения. Готовое устройство выглядит так:

Примерная стоимость преобразователя составляет 250 руб. Его мощности вполне хватает для питания Си-бишной радиостанции с мощностью передатчика до 15 Вт. Ток потребления данным устройством составляет 10 мА. Выходная мощность – 65Вт. Выходное напряжение – 13В.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VR1 Линейный регулятор

LM7815

1 Поиск в LCSC В блокнот
VT1 Биполярный транзистор

TIP142

1 поставить на радиатор Поиск в LCSC В блокнот
VD1-VD4 Диод Шоттки

1N5822

4 Поиск в LCSC В блокнот
C1, C2 4700 мкФ 35 В 2 Поиск в LCSC В блокнот
C3 Электролитический конденсатор 1000 мкФ 25 В 1 Поиск в LCSC В блокнот
Добавить все

Преобразователи напряжения (инверторы) 12/24/220 вольт

Принципиальные электрические схемы инверторов и стабилизаторов

Часть 4. Преобразователи 24В в 12В (линейные стабилизаторы)

Для преобразования напряжения 24-вольтового аккумулятора автомобиля или автобуса в 12 вольт наиболее часто используют простые линейные стабилизаторы напряжения (адаптеры), построенные на микросхеме 7815 (отечественный аналог КР142ЕН8В) с дополнительным одним или несколькими мощными транзисторами. Эта микросхема недефицитна, стоит от 5 до 10 рублей и имеет следующие характеристики:

  • Выходное напряжение - 15В
  • Ток нагрузки - 1,5 А
  • Тип корпуса - TO220
  • Максимальное входное напряжение - 35В
  • Нестабильность по напряжению - 0.05%
  • Нeстабильность по току - 0.67%
  • Температурный диапазон - 10…70 град.С

Электрическая принципиальная схема преобразователя напряжения (адаптера) 24 в 12 вольт линейного типа показана на рис.1


Рис.1. Принципиальная электрическая схема преобразователя напряжения 24В в 12В

Как видим, в этой схеме несколько параллельно включенных мощных транзисторов, обычно от одного до восьми, управляются стабилизатором на микросхеме LM7815. На выходе этой микросхемы поддерживается напряжение 15 вольт, а на выходе преобразователя оно меньше на напряжение перехода база-эмиттер КТ819, равное 1,0..1,2 вольта и равно, следовательно, 13,8...14,0 вольт.

Из достоинств этой схемы преобразователя 24 в 12 вольт следует отметить простоту конструкции, высокую ремонтопригодность, отсутствие помех, характерных для импульсных источников питания, использование недефицитных элементов и дешевизну всего изделия.

Серьёзный недостаток такой схемы преобразователя - низкий КПД из-за рассеивания примерно половины мощности на проходных транзисторах. При средней мощности автомагнитолы 4х40Вт они требуют установки на больших по размеру радиаторах или применения вентилятора для их охлаждения.

Так же снижает КПД схемы и необходимость использования выравнивающих эмиттерных резисторов R1-R4. Для их исключения вместо биполярных транзисторов КТ819 целесообразно применить мощные полевые, которые допускают параллельное включение без таких резисторов. Схема преобразователя с 24 в 12 вольт с использованием распространенных полевых транзисторов IRFZ44N рассмотрена в статье "Стабилизатор 12В на полевых транзисторах" .

Тяжелый тепловой режим работы проходных транзисторов может привести к их пробою. В этом случае на выход преобразователя поступает полное напряжение 24 вольта, что может привести к выходу из строя дорогой автомагнитолы. Один из методов снижения рассеваемой транзисторами мощности - использование гасящих диодов, рассмотрен в статье Улучшенный преобразователь 24В в 12В .

В отличие от схемы линейного стабилизатора, преобразователи напряжения на основе трансформатора лишены этих недостатков, хотя имеют более сложную конструкцию и, соответственно, выше себестоимость. Но если учесть вероятность повреждения дорогостоящей автомагнитолы при использовании линейного адаптера 24 на 12 вольт, то затраты вполне оправданы. Кроме того, такие преобразователи имеют выход не только 12 вольт, но и 220В 50Гц, что значительно расширяет сферу их применения.



top