Импульсные источники тока для питания светодиодов. Несколько простых схем питания светодиодов

Импульсные источники тока для питания светодиодов. Несколько простых схем питания светодиодов

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на , как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой .

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать : многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной . Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.


Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить , например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 ().

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.


При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.


При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.


На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.


Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.


Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Борис Аладышкин


Неуклонная тенденция развития портативной электроники практически ежедневно заставляет рядового пользователя сталкиваться с зарядкой аккумуляторов своих мобильных устройств. Будь вы владельцем мобильного телефона, планшета, ноутбука или даже автомобиля, так или иначе вам неоднократно придётся столкнуться с зарядкой аккумуляторов этих устройств. На сегодняшний день рынок выбора зарядных устройств настолько обширен и велик, что в этом многообразии довольно тяжело сделать грамотный и правильный выбор зарядного устройства, подходящего к типу используемого аккумулятора. К тому же, сегодня существуют более 20-и типов аккумуляторов с различным химическим составом и основой. Каждый из них имеет свою специфику работы заряда и разряда. В силу экономической выгоды современное производство в этой сфере сейчас сконцентрировано преимущественно на выпуске свинцово-кислотных (гелевых) (Pb), никель – металл - гидридных (NiMH), никель – кадмиевых (NiCd) аккумуляторов и аккумуляторов на основе лития – литий-ионных (Li-ion) и литий-полимерных (Li-polymer). Последние из указанных, кстати, активно используются в питании портативных мобильных устройств. Главным образом литиевые аккумуляторы заслужили популярность за счёт применения относительно недорогих химических компонентов, большого количества циклов перезаряда (до 1000), высокой удельной энергии, низкой степени саморазряда, а так же способности удерживать ёмкость при отрицательных значениях температуры.


Электрическая схема зарядного устройства литиевых аккумуляторов, применяемых в мобильных гаджетах сводится к обеспечению их в процессе заряда постоянным напряжением, превышающим на 10 – 15 % номинальное. К примеру, если для питания мобильного телефона используется литий-ионная батарея на 3,7 В., то для её заряда необходим стабилизированный источник питания достаточной мощности для поддержания напряжения заряда не выше 4,2В – 5В. Именно поэтому большинство портативных зарядных устройств, идущих в комплекте с устройством, выпускают на номинальное напряжение 5В, обусловленное максимальным напряжением питания процессора и заряда батареи с учётом встроенного стабилизатора.

Конечно, не стоит забывать и о контроллере заряда, который берёт на себя основной алгоритм заряда батареи, а так же опрос её состояния. Современные литиевые аккумуляторы, выпускаемые для мобильных устройств с малыми токами потребления, уже идут со встроенным контроллером. Контроллер выполняет функцию ограничения тока заряда в зависимости от текущей ёмкости аккумулятора, отключает подачу напряжения устройству в случае критического разряда батареи, защищает батарею в случае короткого замыкания нагрузки (литиевые батареи очень чувствительны к большому току нагрузки и имеют свойство сильно нагреваться и даже взрываться). С целью унификации и взаимозаменяемости литий-ионных аккумуляторов ещё в 1997 году компании Duracell и Intel разработали управляющую шину опроса состояния контроллера, его работы и заряда с названием SMBus. Под эту шину были написаны драйвера и протоколы. Современные контроллеры и сейчас используют основы алгоритма заряда, прописанные этим протоколом. В плане технической реализации существует множество микросхем, способных реализовать контроль заряда литиевых аккумуляторов. Среди них выделяется серия MCP738xx, MAX1555 от MAXIM, STBC08 или STC4054 с уже встроенным защитным n-канальным MOSFET транзистором, резистором определения тока заряда и диапазоном напряжения питания контроллера от 4,25 до 6,5 Вольт. При этом у последних микросхем от STMicroelectronics значение напряжения заряда аккумулятора 4,2 В. имеет разброс всего +/- 1%, а зарядный ток может достигать 800 мА, что позволит реализовать зарядку аккумуляторов ёмкостью до 5000 мА/ч.



Рассматривая алгоритм заряда литий-ионных аккумуляторов стоит сказать, что это один из немногих типов, предусматривающих паспортную возможность зарядки током до 1С (100% ёмкости аккумулятора). Таким образом, аккумулятор ёмкостью в 3000 ма/ч может заряжаться током до 3А. Однако, частая зарядка большим «ударным» током хоть и существенно сократит её время, но в то же время довольно быстро снизит ёмкость аккумулятора и приведёт его в негодность. Из опыта проектирования электрических схем зарядных устройств скажем, что оптимальным значением зарядки литий-инного (полимерного) аккумулятора является значение 0,4С – 0,5С от его ёмкости.



Значение тока в 1С допускается лишь в момент начального заряда батареи, когда ёмкость аккумулятора достигает приблизительно 70% своей максимальной величины. Примером может стать работа зарядки смартфона или планшета, когда первоначальное восстановление ёмкости происходит за короткое время, а оставшиеся проценты набираются медленно.

На практике довольно часто случается эффект глубокого разряда литиевого аккумулятора, когда его напряжение опускается ниже 5% его ёмкости. В этом случае контроллер не в состоянии обеспечить достаточный пусковой ток для набора начальной ёмкости заряда. (Именно поэтому не рекомендуется разряжать такие аккумуляторы ниже 10%). Для решения таких ситуаций необходимо аккуратно разобрать аккумулятор и отключить встроенный контроллер заряда. Далее необходимо к выводам аккумулятора подсоединить внешний источник заряда, способный выдать ток не менее 0,4С ёмкости аккумулятора и напряжение не выше 4,3В (для аккумуляторов на 3,7В.). Электрическая схема зарядного устройства для начальной стадии зарядки таких аккумуляторов может примениться из примера ниже.



Данная схема состоит из стабилизатора тока в 1А. (задаётся резистором R5) на параметрическом стабилизаторе LM317D2T и импульсном регуляторе напряжения LM2576S-adj. Напряжение стабилизации, определяется обратной связью на 4-ю ногу стабилизатора напряжения, то есть соотношением сопротивлений R6 и R7, которыми на холостом ходу выставляется максимальное напряжение зарядки аккумулятора. Трансформатор должен на вторичной обмотке выдавать 4,2 – 5,2 В переменного напряжения. Тогда после стабилизации мы получим 4,2 – 5В постоянного напряжения, достаточного для заряда вышеупомянутого аккумулятора.



Никель – металл - гидридные аккумуляторы (NiMH) чаще всего можно встретить в исполнении корпусов стандартных батареек – это формфактор ААА (R03), АА (R6), D, С, 6F22 9В. Электрическая схема зарядного устройства для NiMH и NiCd аккумуляторов должна в себя включать нижеперечисленные функциональные возможности, связанные со спецификой алгоритма заряда этого типа аккумуляторов.

У различных аккумуляторов (даже с одинаковыми параметрами) со временем меняются химические и емкостные характеристики. В итоге возникает необходимость организовывать алгоритм заряда каждого экземпляра индивидуально, поскольку в процессе зарядки (особенно большими токами, что допускают никелевые аккумуляторы) избыточный перезаряд влияет на быстрый перегрев аккумулятора. Температура в процессе заряда выше 50 градусов из-за химически необратимых процессов распада никеля полностью погубит аккумулятор. Таким образом, электрическая схема зарядного устройства должна иметь функцию контроля температуры аккумулятора. Для увеличения срока службы и количества циклов перезаряда никелевого аккумулятора желательно каждую его банку разрядить до напряжения не ниже 0,9В. током порядка 0,3С от его ёмкости. К примеру, аккумулятор с 2500 – 2700 мА/ч. разрядить на активную нагрузку током в 1А. Так же зарядное устройство должно поддерживать зарядку с «тренировкой», когда в течении нескольких часов происходит циклический разряд до 0,9В с последующим зарядом током 0,3 – 0,4С. Исходя из практики таким образом можно оживить до 30% убитых никелевых аккумуляторов, причём никель-кадмиевые аккумуляторы «реанимации» поддаются гораздо охотнее. По времени заряда электрические схемы зарядных устройств могут делиться на «ускоренные» (ток заряда до 0,7С с временем полного заряда 2 – 2,5ч.), «средней длительности» (0,3 – 0,4С – заряд за 5 – 6ч.) и «классические» (ток 0,1С – время заряда 12 – 15ч.). Конструируя зарядное устройство для NiMH или NiCd аккумулятора, так же можно воспользоваться общепринятой формулой расчёта времени заряда в часах:

T = (E/I) ∙ 1.5

где Е – ёмкость аккумулятора, мА/ч.,
I – ток заряда, мА,
1,5 – коэффициент для компенсации КПД во момент зарядки.
К примеру, время заряда аккумулятора ёмкостью 1200 мА/ч. током 120 мА (0,1С) будет:
(1200/120)*1,5 = 15 часов.

Из опыта эксплуатации зарядных устройств для никелевых аккумуляторов стоит отметить, что чем ниже зарядный ток, тем больше циклов перезаряда перенесёт элемент. Паспортные циклы, как правило, производитель указывает при зарядке аккумулятора током 0,1С с наиболее длительным временем заряда. Степень заряженности банок зарядное устройство может определять через измерение внутреннего сопротивления за счёт разницы падения напряжения в момент заряда и разряда определённым током (метод ∆U).

Итак, учитывая всё вышеизложенное, одним из наиболее простых решений для самостоятельной сборки электрической схемы зарядного устройства и в то же время обладающей высокой эффективностью является схема Виталия Спорыша, описание которой без труда можно найти в сети.





Основными преимуществами данной схемы является возможность зарядки как одного, так и двух последовательно соединённых аккумуляторов, термоконтроль заряда цифровым термометром DS18B20, контроль и измерение тока в процессе заряда и разряда, автоотключение по завершению зарядки, возможность зарядки аккумулятора в «ускоренном» режиме. Кроме того, с помощью специально написанного программного обеспечения и дополнительной платы на микросхеме - преобразователе TTL уровней MAX232 возможен вариант контроля зарядки на ПК и дальнейшей её визуализации в виде графика. К недостаткам стоит отнести необходимость наличия независимого двухуровневого питания.

Аккумуляторы на основе свинца (Pb) довольно часто можно встретить в устройствах с большим потреблением тока: автомобилях, электромобилях, бесперебойниках, в качестве источников питания различного электроинструмента. Нет смысла перечислять их достоинства и недостатки, которые можно разыскать на многих сайтах на просторах сети. В процессе реализации электрической схемы зарядного устройства для таких аккумуляторов следует различать два режима зарядки: буферный и циклический.

Буферный режим зарядки предусматривает одновременное подключение к аккумулятору и зарядного устройства, и нагрузки. Такое подключение можно наблюдать в блоках бесперебойного питания, автомобилях, ветряных и солнечных энергосистемах. При этом, во время подзаряда устройство является ограничителем тока, а когда аккумулятор набирает свою ёмкость – переходит в режим ограничения напряжения для компенсации саморазряда. В этом режиме аккумулятор выступает в роли суперконденсатора. Циклический режим предусматривает отключение зарядного устройства по завершению зарядки и его повторное подключение в случае разряда батареи.

Схемных решений по зарядке данных аккумуляторов в Интернете достаточно много, поэтому рассмотрим некоторые из них. Для начинающего радиолюбителя для реализации простого зарядного устройства «на коленках» отлично подойдёт электрическая схема зарядного устройства на микросхеме L200C от STMicroelectronics. Микросхема представляет собой АНАЛОГОВЫЙ регулятор тока с возможностью стабилизации напряжения. Из всех преимуществ, которые имеет эта микросхема – это простота схемотехники. Пожалуй, на этом все плюсы и заканчиваются. Согласно даташиту на эту микросхему, максимальный ток заряда может достигать 2А, что теоретически позволит зарядить аккумулятор ёмкостью до 20 А/ч напряжением

(регулируемым) от 8 до 18В. Однако, как оказалось на практике, минусов у этой микросхемы гораздо больше, чем плюсов. Уже при зарядке 12 амперного cвинцово-гелевого SLA аккумулятора током 1,2А микросхема требует радиатор площадью не менее 600 кв. мм. Хорошо подходит радиатор с вентилятором от старого процессора. Согласно документации к микросхеме, к ней можно прикладывать напряжение до 40В. На самом деле, если подать по входу напряжение более 33В. – микросхема сгорает. Данное зарядное требует довольно мощный источник питания, способный выдать ток не менее 2А. Согласно приведённой схеме вторичная обмотка трансформатора должна выдавать не более 15 – 17В. переменного напряжения. Значение выходного напряжения, при котором зарядное устройство определяет, что аккумулятор набрал свою ёмкость, определяется значением Uref на 4-й ножке микросхемы и задаётся резистивным делителем R7 и R1. Сопротивления R2 – R6 создают обратную связь, определяя граничное значение зарядного тока аккумулятора.

Резистор R2 в то же время определяет его минимальное значение. При реализации устройства не стоит пренебрегать значением мощности сопротивлений обратной связи и лучше применять такие номиналы, какие указаны в схеме. Для реализации переключения зарядного тока лучшим вариантом станет применение релейного переключателя, к которому подключаются сопротивления R3 – R6. От использования низкоомного реостата лучше отказаться. Данное зарядное устройство способно заряжать аккумуляторы на свинцовой основе ёмкостью до 15 А/ч. при условии хорошего охлаждения микросхемы.



Существенно уменьшить габариты зарядки свинцовых аккумуляторов небольшой ёмкости (до 20 А/ч.) поможет электрическая схема зарядного устройства на импульсном 3А. стабилизаторе тока с регулировкой напряжения LM2576-ADJ.

Для зарядки свинцово-кислотных или гелевых аккумуляторных батарей ёмкостью до 80А/ч. (к примеру, автомобильных). Отлично подойдёт импульсная электрическая схема зарядного устройства универсального типа представленная ниже.




Схема была успешно реализована автором этой статьи в корпусе от компьютерного блока питания ATX. В основе её элементной базы лежат радиоэлементы, большей частью взятые из разобранного компьютерного блока питания. Зарядное устройство работает как стабилизатор тока до 8А. с регулируемым напряжением отсечки заряда. Переменное сопротивление R5 устанавливает значение максимального тока заряда, а резистор R31 устанавливает его граничное напряжение. В качестве датчика тока используется шунт на R33. Реле K1 необходимо для защиты устройства от изменения полярности подключения к клеммам аккумулятора. Импульсные трансформаторы T1 и Т21 в готовом виде были так же взяты из компьютерного блока питания. Работает электрическая схема зарядного устройства следующим образом:

1. включаем зарядное устройство с отключённой батареей (клеммы зарядки откинуты)

2. выставляем переменным сопротивлением R31(на фото верхнее) напряжение заряда. Для свинцового 12В. аккумулятора оно не должно превышать 13,8 – 14,0 В.

3. При правильном подключении зарядных клемм слышим, как щёлкает реле, и на нижнем индикаторе видим значение тока заряда, которое выставляем нижним переменным сопротивлением (R5 по схеме).

4. Алгоритм заряда спроектирован таким образом, что устройство заряжает аккумулятор постоянным заданным током. По мере накопления ёмкости значение зарядного тока стремится к минимальному значению, а «дозаряд» происходит за счёт выставленного ранее напряжения.

Полностью посаженый свинцовый аккумулятор не включит реле, как и собственно саму зарядку. Поэтому важно предусмотреть принудительную кнопку подачи мгновенного напряжения от внутреннего источника питания зарядного устройства на управляющую обмотку реле К1. При этом следует помнить, что в момент нажатой кнопки защита от переполюсовки будет отключена, поэтому нужно перед принудительным пуском обратить особое внимание на правильность подключения клемм зарядного устройства к аккумулятору. Как вариант, возможен запуск зарядки от заряженного аккумулятора, а уж потом перебрасываем клеммы зарядки на требуемый посаженный аккумулятор. Разработчика схемы можно найти под ником Falconist на различных радиоэлектронных форумах.

Для реализации индикатора напряжения и тока была применена схема на pic-контроллере PIC16F690 и «супердоступных деталях», прошивку и описание работы которой можно найти в сети.

Данная электрическая схема зарядного устройства, конечно же, не претендует на звание «эталонной», но она в полной мере способна заменить дорогостоящие зарядные устройства промышленного производства, а по функциональности может даже значительно превзойти многие из них. В окончании стоит сказать, что последняя схема универсального зарядного устройства рассчитана главным образом на человека, подготовленного в радиоконструировании. Если же вы только начинаете, то лучше в мощном зарядном устройстве применить гораздо более простые схемы на обычном мощном трансформаторе, тиристоре и системе его управления на нескольких транзисторах. Пример электрической схемы такого зарядного устройства приведён на фото ниже.

Смотрите также схемы.

Показаны все продукты (0)

Основными преимуществами светодиодных светильников считается экономичность и длительный срок эксплуатации. Если использовать их по 10 часов в сутки, то они прослужат 25 лет. Опять же, это слова производителя. Возможно, они способны прослужить гораздо дольше? Пусть время даст ответ на этот вопрос. Однако, у светодиодных светильников, независимо от их вида и сферы применения, есть одно слабое место – электрический ток.

Выберите подкатегорию товара:

Крепления УЗИП

No products found which match your selection.

Устройство электропитания

На любом электроприборе указываются 2 основных параметра – мощность и входное напряжение. Если входное напряжение превышает допустимую норму – прибор выходит из строя. А где же сила тока? Этот параметр каждый прибор регулирует самостоятельно. Ведь при одинаковом сопротивлении и напряжении сила тока никогда не превысит допустимых значений. Следовательно, для большинства, окружающих нас бытовых электроприборов используется блок питания, задача которого, не допустить превышения максимально допустимого значения напряжения.

Для светодиодных светильников традиционный блок питания не подходит, так как первичной величиной в данном случае, является значение силы тока, превышение допустимого порога которого, хотя бы на 5% приводит к быстрому износу светодиода и сокращению срока эксплуатации дорогостоящего оборудования.

Использование блока питания для светильников приведёт к следующим результатам.

Снижение срока службы светильника.
Уменьшение яркости света.
Помехи в электросети.
Выход из строя блока питания.

Выходом из этой ситуации являются источники тока для светодиодных светильников (драйвера). В отличие от блока питания, драйвер даёт на выходе стабильную мощность и силу тока.

Как работает драйвер?

Лампа с нитью каления имеет средний световой поток 15 люмен/ват, а светодиодная лампа 120 люмен/ват. Следовательно, светодиодная лампа, мощностью 10 Вт – эквивалентна «лампочке Ильича», мощностью 80 Вт.

Драйвер позволяет подсоединить нужное количество ламп последовательно, при этом, с каждым новым элементом, увеличивается напряжение, а сила тока остаётся неизменной. Например, источник тока для светодиодных светильников, мощностью 60 Вт, позволяет, последовательно, подсоединить 6 ламп по 10 Вт, с силой тока 500 мА и общим напряжением 120 В. Такой способ соединения повышает КПД светильников, а поскольку КПД драйверов 97-99% — потеря практически отсутствует.

Как выбрать подходящий драйвер

Источники тока для светодиодных светильников купить которые можно в интернет-магазине «Век светодиодов» по, одним из самых низких в РФ ценам, нужно выбирать вместе со светильником, при этом, количество осветительных элементов, способ соединения, разница между суммарной потребляемой мощности элементов и выходной мощностью драйвера с учётом КПД, указанные в характеристиках драйвера и светодиодных светильников должны совпадать.

Для того, чтобы включить светодиод, можно использовать привычный источник постоянного напряжения - аккумулятор, батарейку, зарядное устройство и пр.

Для питания светодиодных светильников, также как и для других электроприборов, требуется обычная электрическая сеть, которая присутствует в любой квартире в виде розетки.
Всем известно словосочетание " 220 вольт". Нам больше информации не нужно. Если написано 220В - значит в розетку можно включать.
Для светодиодов тоже есть блоки питания на 220В. Сегодня есть самые разные конструкции светодиодов, которым нужно разное питание. Например светодиодные ленты и модули требуют напряжение постоянного тока 12В, значит им может служить любой блок питания, который из переменного 220В преобразует в постоянное напряжение 12В. (как в автомобиле). Такие устройства мы часто встречаем в быту. Они питают принтеры, сканеры, телефоны и т.д. их еще называют сетевыми адаптерами.

Но мощные растительные светодиоды удобнее питать специальными источниками не напряжения, а источниками тока -драйверами. Название это придуманно маркетологами, это полезное, оно позволяет отличить их от простого блока питания. Внешне их можно отличить от блоков питания только по маркировке (!)
Запомните: драйвер - источник стабильного постоянного тока. (именно тока, а не напряжения!)

Ток светодиода - его важнейший параметр и его нужно обязательно соблюдать. Наши одноваттные светодиоды обычно имеют в паспорте указание о номинальном токе 350мА, 700мА и т.д. Это не значит, что он не может работать при других токах - может. Но если ему дать ток выше номинального -он будет светить намного ярче, но из-за перегрева его срок службы сократится.

Поэтому не надо превышать номинальный ток, а правильнее даже чуть занизить его до 320мА. Это обеспечит сохранение ресурса длительное время 50000часов, за счет неперегрева кристалла.
Простейший драйвер – это резистор, который включается последовательно со светодиодом, ограничивает ток и «гасит» избыток напряжения, преобразуя проходящий ток в тепло.
Мощные светодиоды так подключать можно, но очень неудобно – нужны мощные резисторы. Для них нужно свое место крепления и пр. Если нужна головная боль - используйте резисторы и обычные источники стабилизированного напряжения.
Исправный драйвер ни при каких условиях не выдаст больше тока, чем нужно - как бы вы не подключали диоды.

Но драйверов уже стало много, они похожи на электронные трансформаторы для галогенок и продавцы не всегда компетентны - поэтому надо внимательно смотреть его этикетку- шильдик. Там должны быть указаны параметры входного напряжения и выходного.

Рассмотрим такие этикетки-шильдики.

На фото два драйвера во влагозащищенных корпусах. (Бывают вообще без корпуса - не берите, если не имеете достаточного опыта). Оба драйвера обеспечивают ток 320мА. Оба работают от сети 220 В (100-240V). Верхний драйвер позволяет подключить 30- 40штук одноваттных светодиодов, а нижний от 5 до 12шт. Информация о пределах выходного напряжения драйвера является самой важной , она показывает сколько светодиодов можно подключить в цепь (это суммарное падение напряжения для всей цепи)

Для чего это нам? Эта информация нужна для предварительной проверки возможности драйвера запитать определенное количество светодиодов с учетом цвета кристалла. Падение напряжения на светодиоде зависит от типа кристалла. Напомню, что для красных -это 1,8-2,1Вольта, а для синих, зеленых и белых - это 3-3,5Вольта.

Например, мы хотим засветить 5 красных светодиода. Если соединим их в цепь - получим суммарное напряжение на концах цепи 5 х 2 = 10Вольт.На нижнем драйвере написано 5-12 штук, а напряжение минимум 15Вольт. Нельзя недогружать драйвер! Маловато 5 штук, еще надо хотя бы 3штуки (8штХ 2В= 16В). Если бы это были синие 5шт, то напряжение цепи5х3 = 15В - подходит.

Именно потому, что светильник состоит из разных по цвету светодиодов - нужно сначала подсчитать суммарное падение напряжения на всей цепи и только тогда выбирать драйвер. Напряжение нашей светодиодной цепи должно быть в пределах выходного напряжения, указанного на этикетке драйвера. Если вы не попадаете в указанные пределы - тогда придется добавить лишние или убавить рассчитанное ранее количество светодиодов. Это в случае, когда нельзя подыскать другой драйвер.

Из практики: если вы правильно все посчитали, а светильник "моргает" светодиодами - значит ему нехватает нагрузки. Придется добавить светик- другой. Я добавляю зеленые - они здорово улучшают восприятие глазом, хотя растениям от этого немного пользы.

Никогда не загружайте драйвер до верхнего предела мощности- это ведет к его перегреву и снижению надежности, ведь внешняя среда непредсказуема. Вдруг жарко станет на кухне от предпраздничной жарки - варки и он перегреется. капут, однако может быть.
Если вам попадется драйвер на больший ток, например 700мА- его можно использовать для светиков на 350мА, но тогда придется сделать две параллельные светодиодные цепи, либо отдельные светики включать попарно. При этом возможны неприятности - если один светодиод сгорит (не было ни разу), то вторая цепь окажется под удвоенным током, но будет продолжать работать с увеличенной яркостью пока вы не вмешаетесь:

Будьте внимательны - есть драйверы, подключаемые к источникам низкого напряжения 12V, 24V - это указано в этикетке. А выходные напряжения у них могут быть такими же, как и у сетевых.

Дополнение. Кроме одноватных есть и другие светодиоды: 3,5,10 ватт и далее. На драйвере указаны пределы суммарной мощности. Например, верхний драйвер (30-40вТ) может запитать или 30шт одноваттных или 10шт трехваттных и т.п. Главное не уйти за пределы этих параметров.
примечание светодиодные драйвера можно включать параллельно на одну
нагрузку. Это дает возможность быстро увеличивать мощность светового потока
светодиодного светильника за счет увеличения - уменьшения силы тока. (В разумных пределах, конечно.)

Например рассада стала тянуться - увеличиваем ток вдвое через синие
светодиоды. При номинальном токе 350мА (если теплоотвод хороший) , это возможно однако
это уже снижает ресурс долговечности.

Можно для этой цели использовать дополнительный светильник, который
питается дополнительным драйвером только на время интенсивного торможения
рассады томатов.

ПРЕДУПРЕЖДЕНИЯ:

1. включение -выключение драйвера(ов) должно быть только в сетевом проводе
(220В), а не на выходе к светодиодам.
Нельзя коммутировать вторичную цепь драйвера-могут выйти из строя светодиоды.

2. Не забудьте заранее увеличить площадь теплоотвода для светодиодов, при
использовании дополнительного тока. И хорошо "утеплите"
Номенклатура доступных драйверов непрерывно расширяется. Многие
российские заводы начали поставлять "свои" драйвера собранные из китайских
полуфабрикатов - это конечно радует. Но при этом стали попадаться
драйвера по привлекательной цене, в характеристиках которых не указаны очень
важные для электробезопасности сведения. Нам с вами не обязательно знать
электрическую схему драйвера, но степень защиты от поражения электрическим
током зависит именно от нее. Об этом подробнее.

Если в схеме есть трансформатор (у него две обмотки и более) - то
он гальванически отделяет сеть от светодиодов (нет электрической связи между
проводами 220В и проводами для подключения светодиодов!).
А если вместо трансформатора (для экономии), стоит дроссель с двумя
обмотками, то никакого гальванического разделения входной и выходной цепей
не будет! На самом деле, для профессионалов, ничего страшного в этом нет.
Такие драйвера можно использовать для светильников, висящих на недоступной
высоте. В таких конструкциях предусматривают невозможность связи
светодиодов с корпусом и есть надежное заземление!

Но использовать такие драйвера для самодельных светильников ОПАСНО для
ЖИЗНИ!!! потому что фазный провод может быть гальванически связан с
металлическим каркасом светильника.
Поэтому, приобретая драйвера, обязательно интересуйтесь наличием гальванической развязки.

Несмотря на объективные проблемы с внедрением светодиодного освещения, все больше предприятий занимаются разработкой и производством полупроводниковых осветительных приборов. Научно-производственная фирма «Плазмаинформ» вышла на этот рынок в 2010 г. и в настоящее время позиционирует себя разработчиком и серийным производителем источников тока для светодиодных светильников.

Источники питания (ИП) светодиодов - важнейшая часть полупроводникового светильника, во многом определяющая функциональные, светотехнические показатели и надежность осветительного устройства. Для компаний, занимающихся проектированием и установкой систем освещения, помимо светового потока и цветовой температуры важны и такие характеристики, как электробезопасность, КПД, коэффициент мощности, коэффициент пульсаций светового потока, электромагнитная совместимость и стоимость. В результате сотрудничества НПФ «Плазмаинформ» с рядом предприятий, разрабатывающих и производящих осветительные приборы, появились на свет и были запущены в серийное производство источники тока открытого исполнения, обеспечивающие электрические мощности 15, 20, 30, 35, 50 и 100 Вт.

Анализ ИП для светодиодных светильников, выпускаемых рядом фирм, показывает, что схемотехника источников тока определяется требуемой выходной мощностью светильника: если она менее 60 Вт, то обычно выбирается обратноходовой корректор коэффициента мощности (ККМ) со стабилизацией выходного тока. При более высокой выходной мощности используется отдельный ККМ и отдельный преобразователь со стабилизацией выходного тока и гальванической развязкой вход/выход, выполняемый по схемотехнике обратноходового, прямоходового или резонансного LLC-типа. Преобразователи без гальванической развязки (понижающего типа, SEPIC и др.) с точки зрения обеспечения безопасности при эксплуатации светодиодных светильников не имеют широкого распространения.

При разработке большое внимание было уделено таким параметрам, как пульсации выходного тока, электромагнитная совместимость (ЭМС) и стоимость. Выбор пульсаций выходного тока, определяется требованиями к пульсациям светового потока, которые регламентируются стандартами и составляют для светильников общего назначения 10–20%, а для настольных светильников при длительной работе за компьютером - 5–10%. Для уличных светильников пульсации светового потока не регламентированы и должны задаваться для каждого конкретного применения.

Учитывая, что светильники могут подключаться к электрическим сетям достаточно большой протяженности, к которым может быть подсоединено сильноточное оборудование, источники питания должны выдерживать испытательное напряжение 1,5 кВ провод–провод и провод–корпус, а также наносекундные и микросекундные импульсные выбросы и провалы амплитудой до 1,0 кВ. Кроме того, к тем же электрическим сетям могут быть подключены телевизоры, приемники и другая чувствительная к помехам аппаратура. Поэтому необходимо обеспечить соответствие ИП следующим основным стандартам по ЭМС: ГОСТ Р 51318.15- 99, ГОСТ Р 51514-99, ГОСТ Р 51317.3.2.2006 (раздел 6, 7), ГОСТ Р 51317.3.3.2008, ГОСТ Р 51317.4.2.99, ГОСТ Р 51317.4.4.2007, ГОСТ Р 51317.4.5.99, ГОСТ Р 51317.4.6.99, ГОСТ Р 51317.4.11.2007.

Источники PSL (Power Supply Led) выполнены по схеме обратноходового корректора коэффициента мощности со стабилизацией выходного тока и ограничением напряжения. Типовая блок-схема приведена на рис. 1. Основой преобразователя является контроллер ККМ, управляющий силовым ключом и обеспечивающий коэффициент мощности выше 0,9. Осциллограммы входного напряжения и тока, а также действующие и предельные значения гармоник тока источника PSL50 приведены на рис. 2 и 3. Фильтр ЭМС обеспечивает электромагнитную совместимость в соответствии со стандартами на светильники.

Рис. 1. Блок-схема источника


Рис. 2. Осциллограммы входного напряжения и тока PSL50


Рис. 3. Действующие и предельные значения гармоник входного тока PSL50

В качестве примера в таблице 1 приведен уровень радиопомех на сетевых зажимах PSL50 в диапазоне частот 0,009–30 МГц (квазипиковые значения).

Т а б л и ц а 1 . Уровень радиопомех PSL50

Частота, МГц Величина напряжения
радиопомех, дБ (мкВ)
Измеренная Допустимая
(норма)
0,009 56 110
0,04 25 92
0,15 37 66
0,16 35 65,5
0,24 21 62,1
0,55 13 55,2
1 на уровне
шумов
56
3,5 11 56
6 31 56
7,7 37 56
10 32 60
15,6 51 60
28 42 60
30 41 60

Выходной фильтр обеспечивает необходимый уровень пульсаций выходного тока и, соответственно, пульсаций светового потока. Уровень и форма пульсаций токов и напряжений для двух номиналов выходного фильтра PSL50 приведены на рис. 4–7.

Рис. 4. Пульсации выходного тока на номинальной нагрузке. Емкость фильтра 300 мкФ (10 мВ соответствуют 100 мА)

Рис. 5. Пульсации выходного напряжения на номинальной нагрузке. Емкость фильтра 300 мкФ (постоянная составляющая 120 В)

Рис. 6. Пульсации выходного тока на номинальной нагрузке. Емкость фильтра 500 мкФ (10 мВ соответствуют 100 мА)

Рис. 7. Пульсации выходного напряжения на номинальной нагрузке. Емкость фильтра 500 мкФ (постоянная составляющая 120 В)

Осциллограммы показывают, что увеличение выходной емкости на 60% уменьшает пульсации тока в два раза и соответственно снижает пульсации светового потока, поскольку зависимость между ними практически линейная. При включении источники обеспечивают плавную подачу напряжения в течение 50 мс. Форма выходного напряжения при старте PSL50 приведена на рис. 8.

Рис. 8. Выходное напряжение PSL50 в момент включения

Усилитель сигнала ошибки (УСО) по току обеспечивает формирование сигнала ошибки, поддерживая ток через светодиоды на заданном уровне. УСО по напряжению ограничивает выходное напряжение на холостом ходу. Блок гальванической развязки предназначен для передачи сигнала ошибки на контроллер, в первичную цепь. Демпфер ограничивает выброс напряжения на стоке силового ключа, что позволяет использовать более низковольтный и дешевый транзистор.

Питанием источника является сеть переменного тока. Гальваническая развязка входных и выходных цепей между собой и корпусом выдерживает 1,5 кВ и обеспечивает безопасность эксплуатации. Источники соответствуют отечественным и международным нормам в части ЭМС. Имеется встроенная защита от короткого замыкания на выходе, обеспечивается работа на холостом ходу. Основные технические характеристики источников приведены в таблице 2.

Т а б л и ц а 2 . Параметры источников питания

Наименование параметра Тип источника
PSL15 PSL20 PSL30 PSL35 PSL50 PSL100
Напряжение питания 176–264 В, 50/60 Гц
Максимальная мощность, Вт 20 20 20 20 20 20
Диапазон выходного напряжения, В 24–32 36–48 44–50 25–38 100–144 200–300
Выходной ток, мА 500±30 360±20 600±20 900±30 360±20 370±20
Нестабильность выходного тока, %
(не более)
5 5 5 5 5 5
Пульсации выходного тока, %
(не более)
20 20 20 20 10 10
Коэффициент полезного действия, %
(не менее)
85 85 85 85 90 90
Коэффициент мощности, %
(не менее)
90 90 90 90 97 95
Рабочая температура, °C –25…+65 0…+40 0…+40 0…+40 0…+40 –45…+60
Средний ресурс, ч 50 000
Габаритные размеры, мм (не более) 135×40×25 145×30×25 145×30×25 145×30×25 160×33×25 180×40×36
Масса, г (не более) 100 100 100 100 110 160

Внешний вид PSL15, PSL35, PSL50 и PSL100 приведен на рис. 9–12 соответственно. Источники PSL20 и PSL30 имеют конструктивное исполнение, аналогичное PSL35.

Рис. 9. Источник PSL15

Рис. 10. Источник PSL35

Рис. 11. Источник PSL50

Рис. 12. Источник PSL100

Для специальных конструкций светильников разработан недорогой сетевой неизолированный источник тока мощностью 9 Вт (PSL9). Он представляет собой понижающий преобразователь с пассивной коррекцией коэффициента мощности. Схема источника приведена рис. 13, внешний вид - на рис. 14. Основа источника - микросхема драйвера HV9910. Цепочка С1– VD2–VD3–VD4–C2 - пассивный ККМ. Выходной ток задается резисторами R4, R5, R6. C3 - выходной фильтрующий конденсатор. Параметры источника PSL9 приведены в таблице 3.


Рис. 13. Схема PSL9

Рис. 14. Источник PSL9

Т а б л и ц а 3 . Параметры источника PSL9

Напряжение питания 176–264 В, 50/60 Гц
Коэффициент полезного действия, % (не менее) 80
Коэффициент мощности, % (не менее) 84
Минимальное выходное рабочее напряжение, В 20
Максимальное выходное рабочее напряжение, В 32
Максимальное напряжение холостого хода, В 350
Стабилизированный выходной ток, мА 350±10
Нестабильность выходного тока, % (не более) 5
Пульсации выходного тока, % (не более) 15
Габаритные размеры (Д×Ш×В), мм 45×33×25
Диапазон рабочих температур, °С 0…+40

Светильники, в конструкции которых использованы PSL9, PSL15, PSL30, PSL100, проходят опытную эксплуатацию. Светильники с PSL20, PSL35 и PSL50 выпускаются серийно.

Выбранная схема построения источников питания позволяет без больших затрат модифицировать конструкцию для получения других значений выходного напряжения и тока в пределах заявленной мощности, обеспечивая питание светильников с иной схемой включения светодиодов.



top