Зарядное устройство со стабилизацией тока схема. Простое регулируемое автомобильное зарядное

Зарядное устройство со стабилизацией тока схема. Простое регулируемое автомобильное зарядное

Эта статья является ответом на вопрос одного из посетителей сайта. Схема зарядного устройства для аккумуляторов приведена на рисунке 1.

Вообще схема является одной из типовых схем включения трехвыводного, регулируемого интегрального стабилизатора положительного напряжения LM317, российский аналог — КР142ЕН12А.

Схема работает следующим образом. При небольшом токе, протекающем через сопротивление нагрузки, схема ведет себя, как обычный стабилизатор напряжения, выходное напряжение, которого выставляется резистором R3. Сопротивление данного резистора можно рассчитать по приведенным формулам. При уменьшении сопротивления нагрузки, т.е. увеличении тока, протекающего через микросхему, увеличивается падение напряжения на резисторе R1. Когда напряжение на этом резисторе приблизится в напряжению открывания транзистора VT2, это примерно, где то 0,6 В, через последний начнет протекать часть тока нагрузки. Это значит, что после определенной величины нагрузочного тока, весь основной ток примет на себя мощный транзистор. Максимальный ток стабилизатора в данном случае будет ограничиваться максимальным током коллектора примененного транзистора. Но в схеме есть система ограничения тока, состоящая из транзистора VT1 и резистора R2. В данном случае резистор R2 является датчиком тока и от его величины будет зависеть уровень его ограничения. Схема ограничения тока работает следующим образом. Допустим, по какой-то причине увеличился ток, протекающий через транзистор VT2, увеличилось и падение напряжения на резисторе R2 – датчике тока. Когда это напряжение достигнет примерно опять-таки же 0,6 В, начнет открываться транзистор VT1 и собой шунтировать переход база-эмиттер транзистора VT2, уменьшая тем самым его ток коллектора. Наступает режим ограничения тока. При сопротивлении резистора R2 0,1 Ом и учитывая, что для открывания кремниевых транзисторов необходимо напряжение примерно 0,6 В, получим, что ограничение тока наступит примерно на уровне 6 А. I = U/R = 0,6/0,1 = 6.
Недостатком этой схемы является невозможность плавной регулировки выходного стабильного тока, но если это зарядное будет использоваться для зарядки однотипных аккумуляторов, то этим можно пренебречь. Выбор диодов зависит, конечно, от тока нагрузки. Если зарядное будет использоваться для автомобильных аккумуляторов, то в качестве сетевого трансформатора можно использовать ТС-180. Как его перемотать прочитайте

Мне пришлось совсем недавно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Конечно мудрить, что то не желания, не времени не было и в первую очередь вспомнилась мне схема стабилизатора зарядного тока. По этой схеме очень просто и надежно сделать зарядное устройство.

Вот сама схема для зарядного устройства:

Установлена была старая микросхема (К553УД2), она хоть и старая, просто время не было опробовать новые, да и к тому же она оказалась под рукой. Шунт от старого тестера прекрасно подошел на место резистора R3. Резистор можно конечно и самим изготовить из нихрома, но при этом сечение должно быть достаточным, чтобы выдержать через себя ток и не накалиться до предела.


Устанавливаем шунт параллельно амперметру, подбираем его учитывая размеры измерительной головки. Собственно и устанавливаем мы его на саму клемму головки.

Таким образом выглядит печатная плата стабилизатора тока зарядного устройства:



Трансформатор может быть применен любой от 85 вт и выше. Обмотка вторичная должна быть на напряжение 15 вольт, а сечение провода должно начинаться от 1,8 мм (диаметр по меди). На место выпрямительного моста подошел 26МВ120А. Может он большеват для такого типа конструкции, зато устанавливать его очень просто, прикрутил и надел клеммы. Можно и установить любой диодный мост. Для него главная задача – выдержать соответствующий ток.

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ

ЗАРЯДНОЕ УСТРОЙСТВО С ТАЙМЕРОМ

Пуск зарядного устройства производится нажатием кнопки "пуск" на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает "самоподхват".
По окончании зарядки реле К1 срабатывает, и схема полностью отключается от сети. Настройка схемы очень похожа на настройку предыдущей схемы и здесь не описывается - собственно, это вариант предыдущей схемы.
В качестве переключателя режима работы SA1 можно использовать подходящий тумблер с тремя фиксированными состояниями. Реле К1 типа РП-21 или аналогичное с катушкой на 24 В. и контактами, способными коммутировать переменный ток 5 А., 220 В.

ЗАРЯДНОЕ УСТРОЙСТВО СО СТАБИЛИЗАТОРОМ ТОКА
И КОНТРОЛЕМ НАПРЯЖЕНИЯ ЗАРЯДКИ

Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA494, КА7500В, К1114УЕ4).
Устройство обеспечивает регулировку тока заряда в пределах 1- б А. (10 A. max) и выходного напряжения 2 - 20 В. Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 - VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 - 400 кв. см.
Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. Требования к его изготовлению описаны в предыдущей схеме. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров ЗУСЦТ или аналогичный.
Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 ... 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 - 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается.
Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации - необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора СЗ или установить дроссель большего типоразмера.

При отсутствии силового транзистора структуры p-n-р в схеме можно использовать мощные транзисторы структуры n-p-п, как показано на рисунке.

В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10 А. и напряжение 50В, в крайнем случае, можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например КВРС3506, МР3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое.
Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока.
Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 - 100 кОм.
Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
Микросхема установлена на небольшой печатной плате 45 х 40 мм., остальные элементы схемы установлены на основании устройства и радиаторе. Монтажная схема подключения печатной платы приведена на рисунке справа.

В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В. и тока б А., то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора, также можно уменьшить до 100 - 200 кв. см.
Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.

ЗАРЯДНОЕ УСТРОЙСТВО ПОВЫШЕННОЙ МОЩНОСТИ

Наибольшие проблемы вызывает изготовление накопительного дросселя L1, выбор ключевого транзистора и выходного диода. Параллельное включение нескольких мощных транзисторов проблему не очень решает, т. к. требуется выровнять падения напряжения на каждом транзисторе, в противном случае, основную нагрузку по току возьмёт на себя один из транзисторов и быстро перегреется. Если в качестве ключевого транзистора использовать мощные силовые N- канальные полевые транзисторы, например, IRFP264, потребуется дополнительный узел, обеспечивающий превышение напряжения на затворе на 15 В. В относительно истока, подключенного к накопительному дросселю.
Номенклатура Р - канальных силовых полевых транзисторов, которые проще внедрить в схему, достаточно мала и не позволяет найти приемлемый вариант. Можно использовать силовые n-p-п транзисторы BUX20, специально предназначенные для таких устройств и обеспечивающие ток коммутации до 50 А., но схему придётся усложнить, т. к. эти транзисторы имеют малый коэффициент усиления и иную структуру. Наиболее просто увеличить выходной ток в ранее рассмотренной схеме - это применить двухтактное ключевое регулирование, дополнив схему ещё одним накопительным дросселем, ключевым транзистором и диодом. Предлагаемая схема обеспечивает такие возможности. Требования к изготовлению накопительных дросселей аналогичны.
Транзисторы VI, VT2, выходные диоды VD3, VD4 и диодный мост VD1 устанавливаются через слюдяные прокладки на общий радиатор, в качестве которого можно использовать металлическое днище прибора. Настройка схемы ничем не отличается от ранее описанной и не приводится.
Из-за повышенных рассеиваемых мощностей в качестве накопительных конденсаторов CI, С5 следует использовать только конденсаторы больших размеров и с повышенным рабочим напряжением.

По материалам сайта http://kravitnik. narod. ru

Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока

Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.
Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)

Простой стабилизатор тока на КРЕНке

Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).
Схема и применение показаны на рисунках ниже


Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.

Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.

Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.

Простой стабилизатор тока на двух транзисторах

Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.

Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.



Вместо биполярного транзистора VT2, можно применить – полевой транзистор.

Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.


Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:


В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности.

Стабилизатор тока на операционном усилителе (на ОУ)

Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис:


В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1.

Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1.

В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП.

Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме

На осциллограмме луч 1 (желтый ) показывает напряжение нагружаемого ИП (источника питания), луч 2 (голубой ) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного.

Стабилизатор тока на микросхеме импульсного стабилизатора напряжения

Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке.

  • Напряжение питяния 2…16,5В
  • Собственное потребление 110uA
  • Выходная мощность до 15W
  • КПД при токе нагрузки 10mA…1A достигает 90%
  • Опорное напряжение 1,5V

На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.


Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.

Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.
Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки.


При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.

Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.
Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз.

Заключение

Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.

Попалась в интернете схема двухканального зарядного устройства. Я не стал делать сразу на два канала, так как не было необходимости - собрал один. Схема вполне рабочая и заряжает прекрасно.

Схема ЗУ для автоаккумуляторов

Характеристики зарядного устройства

  • Напряжение сети 220 В.
  • Выходное напряжение 2 х 16 В.
  • Ток заряда 1 - 10 А.
  • Ток разряда 0,1 - 1 А.
  • Форма тока заряда - однополупериодный выпрямитель.
  • Ёмкость аккумуляторов 10 - 100 А/ч.
  • Напряжение заряжаемых аккумуляторов 3,6 - 12 В.

Описание работы: это зарядно-разрядное устройство на два канала с раздельной регулировкой тока заряда и тока разряда, что очень удобно и позволяет подобрать оптимальные режимы восстановления пластин аккумулятора исходя из их технического состояния. Использование циклического режима восстановления приводит к значительному снижению выхода газов сероводорода и кислорода из-за их полного использования в химической реакции, ускоренно восстанавливается внутреннее сопротивление и ёмкость до рабочего состояния, отсутствует перегрев корпуса и коробление пластин.

Ток разряда при зарядке ассиметричным током должен составлять не более 1/5 тока заряда. В инструкциях заводов изготовителей перед зарядкой аккумулятора требуется произвести разрядку, то есть провести формовку пластин перед зарядом. Искать подходящую разрядную нагрузку нет необходимости, достаточно выполнить соответствующее переключение в устройстве. Контрольную разрядку желательно проводить током в 0,05С от ёмкости аккумулятора в течении 20 часов. Схема позволяет провести формовку пластин двух аккумуляторов одновременно с раздельной установкой разрядного и зарядного тока.

Регуляторы тока представляют ключевые регуляторы на мощных полевых транзисторах VT1,VT2.
В цепях обратной связи установлены оптопары, необходимые для защиты транзисторов от перегрузки. При больших токах заряда влияние конденсаторов C3,C4 минимальное и почти однополупериодный ток длительностью 5 мс с паузой в 5 мс ускоряет восстановление пластин аккумуляторов, за счёт паузы в цикле восстановления, не возникает перегрева пластин и электролиза, улучшается рекомбинация ионов электролита с полным использованием в химической реакции атомов водорода и кислорода.

Конденсаторы С2,С3 работая в режиме умножения напряжения, при переключении диодов VD1,VD2, создают дополнительный импульс для расплавления крупнокристаллической сульфатации и переводе окисла свинца в аморфный свинец. Регуляторы тока обеих каналов R2, R5 питаются от параметрических стабилизаторов напряжения на стабилитронах VD3, VD4. Резисторы R7, R8 в цепях затворов полевых транзисторов VT1, VT2 ограничивают ток затвора до безопасной величины.

Транзисторы оптопар U1, U2 предназначены для шунтирования напряжения затвора полевых транзисторов при перегрузке зарядным или разрядным токами. Напряжение управления снимается с резисторов R13, R14 в цепях стока, через подстроечные резисторы R11, R12 и через ограничительные резисторы R9, R10 на светодиоды оптопар. При повышенном напряжении на резисторах R13, R14 транзисторы оптопар открываются и снижают напряжение управления на затворах полевых транзисторов, токи в цепи сток-исток понижаются.

Обсудить статью ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ



top